update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: ainize/bart-base-cnn
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: bart-samsum
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# bart-samsum
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [ainize/bart-base-cnn](https://huggingface.co/ainize/bart-base-cnn) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4587
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 1
|
39 |
+
- eval_batch_size: 1
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 16
|
42 |
+
- total_train_batch_size: 16
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 15
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
+
| 1.2901 | 0.64 | 500 | 1.2203 |
|
53 |
+
| 1.2057 | 1.28 | 1000 | 1.1384 |
|
54 |
+
| 1.1364 | 1.93 | 1500 | 1.1225 |
|
55 |
+
| 0.9711 | 2.57 | 2000 | 1.1362 |
|
56 |
+
| 0.786 | 3.21 | 2500 | 1.1461 |
|
57 |
+
| 0.818 | 3.85 | 3000 | 1.1298 |
|
58 |
+
| 0.7135 | 4.49 | 3500 | 1.1666 |
|
59 |
+
| 0.6222 | 5.14 | 4000 | 1.2114 |
|
60 |
+
| 0.64 | 5.78 | 4500 | 1.2103 |
|
61 |
+
| 0.5272 | 6.42 | 5000 | 1.2571 |
|
62 |
+
| 0.5057 | 7.06 | 5500 | 1.2963 |
|
63 |
+
| 0.4917 | 7.7 | 6000 | 1.2937 |
|
64 |
+
| 0.4291 | 8.35 | 6500 | 1.3286 |
|
65 |
+
| 0.4171 | 8.99 | 7000 | 1.3125 |
|
66 |
+
| 0.418 | 9.63 | 7500 | 1.3516 |
|
67 |
+
| 0.3576 | 10.27 | 8000 | 1.3778 |
|
68 |
+
| 0.3736 | 10.91 | 8500 | 1.3847 |
|
69 |
+
| 0.3443 | 11.56 | 9000 | 1.4215 |
|
70 |
+
| 0.2952 | 12.2 | 9500 | 1.4324 |
|
71 |
+
| 0.3236 | 12.84 | 10000 | 1.4355 |
|
72 |
+
| 0.2978 | 13.48 | 10500 | 1.4473 |
|
73 |
+
| 0.2828 | 14.13 | 11000 | 1.4557 |
|
74 |
+
| 0.304 | 14.77 | 11500 | 1.4587 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.31.0
|
80 |
+
- Pytorch 2.0.1+cu118
|
81 |
+
- Datasets 2.13.0
|
82 |
+
- Tokenizers 0.13.3
|