bart-samsum

This model is a fine-tuned version of ainize/bart-base-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4587

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
1.2901 0.64 500 1.2203
1.2057 1.28 1000 1.1384
1.1364 1.93 1500 1.1225
0.9711 2.57 2000 1.1362
0.786 3.21 2500 1.1461
0.818 3.85 3000 1.1298
0.7135 4.49 3500 1.1666
0.6222 5.14 4000 1.2114
0.64 5.78 4500 1.2103
0.5272 6.42 5000 1.2571
0.5057 7.06 5500 1.2963
0.4917 7.7 6000 1.2937
0.4291 8.35 6500 1.3286
0.4171 8.99 7000 1.3125
0.418 9.63 7500 1.3516
0.3576 10.27 8000 1.3778
0.3736 10.91 8500 1.3847
0.3443 11.56 9000 1.4215
0.2952 12.2 9500 1.4324
0.3236 12.84 10000 1.4355
0.2978 13.48 10500 1.4473
0.2828 14.13 11000 1.4557
0.304 14.77 11500 1.4587

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
107
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gsl22/bart-samsum

Finetuned
(5)
this model