|
import os,sys,pdb,torch |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import argparse |
|
import glob |
|
import sys |
|
import torch |
|
from multiprocessing import cpu_count |
|
import ffmpeg |
|
import numpy as np |
|
|
|
|
|
def load_audio(file, sr): |
|
try: |
|
|
|
|
|
|
|
file = ( |
|
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
out, _ = ( |
|
ffmpeg.input(file, threads=0) |
|
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr) |
|
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) |
|
) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load audio: {e}") |
|
|
|
return np.frombuffer(out, np.float32).flatten() |
|
|
|
|
|
class Config: |
|
def __init__(self,device,is_half): |
|
self.device = device |
|
self.is_half = is_half |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("16系/10系显卡和P40强制单精度") |
|
self.is_half = False |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
elif torch.backends.mps.is_available(): |
|
print("没有发现支持的N卡, 使用MPS进行推理") |
|
self.device = "mps" |
|
else: |
|
print("没有发现支持的N卡, 使用CPU进行推理") |
|
self.device = "cpu" |
|
self.is_half = True |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
now_dir=os.getcwd() |
|
sys.path.append(now_dir) |
|
sys.path.append(os.path.join(now_dir,"Retrieval-based-Voice-Conversion-WebUI")) |
|
from vc_infer_pipeline import VC |
|
from lib.infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono |
|
from fairseq import checkpoint_utils |
|
from scipy.io import wavfile |
|
|
|
hubert_model=None |
|
def load_hubert(): |
|
global hubert_model |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(device) |
|
if(is_half):hubert_model = hubert_model.half() |
|
else:hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate,filter_radius=3,resample_sr=48000,rms_mix_rate=0.25, protect=0.33): |
|
global tgt_sr,net_g,vc,hubert_model |
|
if input_audio is None:return "You need to upload an audio", None |
|
f0_up_key = int(f0_up_key) |
|
audio=load_audio(input_audio,16000) |
|
times = [0, 0, 0] |
|
if(hubert_model==None):load_hubert() |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version") |
|
audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius=filter_radius,tgt_sr=tgt_sr,resample_sr=resample_sr,rms_mix_rate=rms_mix_rate,version=version,protect=protect,f0_file=f0_file) |
|
|
|
return audio_opt |
|
|
|
|
|
def get_vc(model_path, device_, is_half_): |
|
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half |
|
device = device_ |
|
is_half = is_half_ |
|
config = Config(device, is_half) |
|
print("loading pth %s"%model_path) |
|
cpt = torch.load(model_path, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0=cpt.get("f0",1) |
|
version=cpt.get("version", "v2") |
|
if(if_f0==1): |
|
if version == "v1": |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) |
|
else: |
|
if version == "v1": |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(device) |
|
if (is_half):net_g = net_g.half() |
|
else:net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk=cpt["config"][-3] |
|
|