File size: 6,441 Bytes
90ca2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os,sys,pdb,torch
now_dir = os.getcwd()
sys.path.append(now_dir)
import argparse
import glob
import sys
import torch
from multiprocessing import cpu_count
import ffmpeg
import numpy as np
def load_audio(file, sr):
try:
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
file = (
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e}")
return np.frombuffer(out, np.float32).flatten()
class Config:
def __init__(self,device,is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("16系/10系显卡和P40强制单精度")
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("没有发现支持的N卡, 使用MPS进行推理")
self.device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
self.device = "cpu"
self.is_half = True
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max
now_dir=os.getcwd()
sys.path.append(now_dir)
sys.path.append(os.path.join(now_dir,"Retrieval-based-Voice-Conversion-WebUI"))
from vc_infer_pipeline import VC
from lib.infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono
from fairseq import checkpoint_utils
from scipy.io import wavfile
hubert_model=None
def load_hubert():
global hubert_model
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
if(is_half):hubert_model = hubert_model.half()
else:hubert_model = hubert_model.float()
hubert_model.eval()
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate,filter_radius=3,resample_sr=48000,rms_mix_rate=0.25, protect=0.33):
global tgt_sr,net_g,vc,hubert_model
if input_audio is None:return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
audio=load_audio(input_audio,16000)
times = [0, 0, 0]
if(hubert_model==None):load_hubert()
if_f0 = cpt.get("f0", 1)
version = cpt.get("version")
audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius=filter_radius,tgt_sr=tgt_sr,resample_sr=resample_sr,rms_mix_rate=rms_mix_rate,version=version,protect=protect,f0_file=f0_file)
# print(times)
return audio_opt
def get_vc(model_path, device_, is_half_):
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half
device = device_
is_half = is_half_
config = Config(device, is_half)
print("loading pth %s"%model_path)
cpt = torch.load(model_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
if_f0=cpt.get("f0",1)
version=cpt.get("version", "v2")
if(if_f0==1):
if version == "v1":
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
else:
if version == "v1":
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩
net_g.eval().to(device)
if (is_half):net_g = net_g.half()
else:net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk=cpt["config"][-3]
|