grace-pro commited on
Commit
06fd60d
·
1 Parent(s): e283768

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: Davlan/afro-xlmr-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: wandb_v4_5e-5
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # wandb_v4_5e-5
20
+
21
+ This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1647
24
+ - Precision: 0.3544
25
+ - Recall: 0.2986
26
+ - F1: 0.3241
27
+ - Accuracy: 0.9519
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1942 | 0.54 | 500 | 0.1416 | 0.3913 | 0.1885 | 0.2544 | 0.9571 |
59
+ | 0.1761 | 1.07 | 1000 | 0.1391 | 0.3919 | 0.1800 | 0.2467 | 0.9574 |
60
+ | 0.1561 | 1.61 | 1500 | 0.1362 | 0.4214 | 0.2081 | 0.2786 | 0.9582 |
61
+ | 0.1538 | 2.15 | 2000 | 0.1436 | 0.3513 | 0.2747 | 0.3083 | 0.9529 |
62
+ | 0.1327 | 2.68 | 2500 | 0.1453 | 0.3424 | 0.2984 | 0.3189 | 0.9510 |
63
+ | 0.1218 | 3.22 | 3000 | 0.1467 | 0.3726 | 0.2862 | 0.3237 | 0.9540 |
64
+ | 0.1068 | 3.76 | 3500 | 0.1583 | 0.3466 | 0.3004 | 0.3218 | 0.9513 |
65
+ | 0.0978 | 4.29 | 4000 | 0.1658 | 0.3413 | 0.3021 | 0.3205 | 0.9505 |
66
+ | 0.0891 | 4.83 | 4500 | 0.1647 | 0.3544 | 0.2986 | 0.3241 | 0.9519 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.31.0
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.14.4
74
+ - Tokenizers 0.13.3