wandb_v4_5e-5
This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1647
- Precision: 0.3544
- Recall: 0.2986
- F1: 0.3241
- Accuracy: 0.9519
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1942 | 0.54 | 500 | 0.1416 | 0.3913 | 0.1885 | 0.2544 | 0.9571 |
0.1761 | 1.07 | 1000 | 0.1391 | 0.3919 | 0.1800 | 0.2467 | 0.9574 |
0.1561 | 1.61 | 1500 | 0.1362 | 0.4214 | 0.2081 | 0.2786 | 0.9582 |
0.1538 | 2.15 | 2000 | 0.1436 | 0.3513 | 0.2747 | 0.3083 | 0.9529 |
0.1327 | 2.68 | 2500 | 0.1453 | 0.3424 | 0.2984 | 0.3189 | 0.9510 |
0.1218 | 3.22 | 3000 | 0.1467 | 0.3726 | 0.2862 | 0.3237 | 0.9540 |
0.1068 | 3.76 | 3500 | 0.1583 | 0.3466 | 0.3004 | 0.3218 | 0.9513 |
0.0978 | 4.29 | 4000 | 0.1658 | 0.3413 | 0.3021 | 0.3205 | 0.9505 |
0.0891 | 4.83 | 4500 | 0.1647 | 0.3544 | 0.2986 | 0.3241 | 0.9519 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for grace-pro/wandb_v4_5e-5
Base model
Davlan/afro-xlmr-base