cppe-5 / README.md
goodcasper's picture
End of training
327d29a verified
metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_r50vd_coco_o365
tags:
  - generated_from_trainer
model-index:
  - name: cppe-5
    results: []

cppe-5

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 125.0968
  • eval_model_preparation_time: 0.0034
  • eval_map: 0.0
  • eval_map_50: 0.0003
  • eval_map_75: 0.0
  • eval_map_small: 0.0
  • eval_map_medium: 0.0001
  • eval_map_large: 0.0002
  • eval_mar_1: 0.0013
  • eval_mar_10: 0.0027
  • eval_mar_100: 0.0076
  • eval_mar_small: 0.0
  • eval_mar_medium: 0.0146
  • eval_mar_large: 0.0218
  • eval_map_Coverall: 0.0
  • eval_mar_100_Coverall: 0.0072
  • eval_map_Face_Shield: 0.0
  • eval_mar_100_Face_Shield: 0.0025
  • eval_map_Gloves: 0.0001
  • eval_mar_100_Gloves: 0.0004
  • eval_map_Goggles: 0.0
  • eval_mar_100_Goggles: 0.0108
  • eval_map_Mask: 0.0
  • eval_mar_100_Mask: 0.0169
  • eval_runtime: 3.3548
  • eval_samples_per_second: 44.713
  • eval_steps_per_second: 5.664
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 120

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.1