metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_r50vd_coco_o365
tags:
- generated_from_trainer
model-index:
- name: cppe-5
results: []
cppe-5
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 125.0968
- eval_model_preparation_time: 0.0034
- eval_map: 0.0
- eval_map_50: 0.0003
- eval_map_75: 0.0
- eval_map_small: 0.0
- eval_map_medium: 0.0001
- eval_map_large: 0.0002
- eval_mar_1: 0.0013
- eval_mar_10: 0.0027
- eval_mar_100: 0.0076
- eval_mar_small: 0.0
- eval_mar_medium: 0.0146
- eval_mar_large: 0.0218
- eval_map_Coverall: 0.0
- eval_mar_100_Coverall: 0.0072
- eval_map_Face_Shield: 0.0
- eval_mar_100_Face_Shield: 0.0025
- eval_map_Gloves: 0.0001
- eval_mar_100_Gloves: 0.0004
- eval_map_Goggles: 0.0
- eval_mar_100_Goggles: 0.0108
- eval_map_Mask: 0.0
- eval_mar_100_Mask: 0.0169
- eval_runtime: 3.3548
- eval_samples_per_second: 44.713
- eval_steps_per_second: 5.664
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 120
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.1