gokuls's picture
End of training
097ca4b
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: mobilebert_sa_GLUE_Experiment_qqp_256
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QQP
          type: glue
          config: qqp
          split: validation
          args: qqp
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7976007914914668
          - name: F1
            type: f1
            value: 0.7297109826589595

mobilebert_sa_GLUE_Experiment_qqp_256

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4349
  • Accuracy: 0.7976
  • F1: 0.7297
  • Combined Score: 0.7637

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.526 1.0 2843 0.5088 0.7492 0.6674 0.7083
0.4762 2.0 5686 0.4782 0.7695 0.6583 0.7139
0.4438 3.0 8529 0.4532 0.7847 0.6829 0.7338
0.4161 4.0 11372 0.4602 0.7869 0.7135 0.7502
0.3968 5.0 14215 0.4395 0.7955 0.7212 0.7583
0.3815 6.0 17058 0.4392 0.7985 0.7190 0.7587
0.3659 7.0 19901 0.4349 0.7976 0.7297 0.7637
0.352 8.0 22744 0.4419 0.8005 0.7300 0.7652
0.3399 9.0 25587 0.4454 0.7998 0.7317 0.7658
0.327 10.0 28430 0.4614 0.7995 0.7359 0.7677
0.3157 11.0 31273 0.4733 0.8000 0.7246 0.7623
0.3041 12.0 34116 0.4738 0.8041 0.7283 0.7662

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.8.0
  • Tokenizers 0.13.2