gokuls's picture
End of training
8090099
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: mobilebert_sa_GLUE_Experiment_mrpc_256
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6911764705882353
          - name: F1
            type: f1
            value: 0.7947882736156351

mobilebert_sa_GLUE_Experiment_mrpc_256

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6111
  • Accuracy: 0.6912
  • F1: 0.7948
  • Combined Score: 0.7430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6431 1.0 29 0.6261 0.6838 0.8122 0.7480
0.6296 2.0 58 0.6235 0.6838 0.8122 0.7480
0.6306 3.0 87 0.6237 0.6838 0.8122 0.7480
0.6297 4.0 116 0.6238 0.6838 0.8122 0.7480
0.6276 5.0 145 0.6207 0.6838 0.8122 0.7480
0.6197 6.0 174 0.6213 0.6838 0.8122 0.7480
0.6065 7.0 203 0.6284 0.6912 0.8043 0.7478
0.5258 8.0 232 0.6111 0.6912 0.7948 0.7430
0.4596 9.0 261 0.6506 0.7034 0.8052 0.7543
0.3953 10.0 290 0.7271 0.7034 0.7932 0.7483
0.3426 11.0 319 0.9509 0.6740 0.7542 0.7141
0.2821 12.0 348 1.0021 0.6863 0.7808 0.7335
0.2177 13.0 377 1.0359 0.6691 0.7676 0.7184

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.8.0
  • Tokenizers 0.13.2