giantmonkeyTC
2344
34d1f8b
# SemanticKITTI 数据集
本页提供了有关在 MMDetection3D 中使用 SemanticKITTI 数据集的具体教程。
## 数据集准备
您可以在[这里](http://semantic-kitti.org/dataset.html#download)下载 SemanticKITTI 数据集并解压缩所有 zip 文件。
像准备数据集的一般方法一样,建议将数据集根目录链接到 `$MMDETECTION3D/data`
在我们处理之前,文件夹结构应按如下方式组织:
```
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│ ├── semantickitti
│ │ ├── sequences
│ │ │ ├── 00
│ │ │ │   ├── labels
│ │ │ │   ├── velodyne
│ │ │ ├── 01
│ │ │ ├── ..
│ │ │ ├── 22
```
SemanticKITTI 数据集包含 23 个序列,其中序列 \[0-7\] , \[9-10\] 作为训练集(约 19k 训练样本),序列 8 作为验证集(约 4k 验证样本),\[11-22\] 作为测试集 (约20k测试样本)。其中每个序列分别包含 velodyne 和 labels 两个文件夹分别存放激光雷达点云数据和分割标注 (其中高16位存放实例分割标注,低16位存放语义分割标注)。
### 创建 SemanticKITTI 数据集
我们提供了生成数据集信息的脚本,用于测试和训练。通过以下命令生成 `.pkl` 文件:
```bash
python ./tools/create_data.py semantickitti --root-path ./data/semantickitti --out-dir ./data/semantickitti --extra-tag semantickitti
```
处理后的文件夹结构应该如下:
```
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│ ├── semantickitti
│ │ ├── sequences
│ │ │ ├── 00
│ │ │ │   ├── labels
│ │ │ │   ├── velodyne
│ │ │ ├── 01
│ │ │ ├── ..
│ │ │ ├── 22
│ │ ├── semantickitti_infos_test.pkl
│ │ ├── semantickitti_infos_train.pkl
│ │ ├── semantickitti_infos_val.pkl
```
- `semantickitti_infos_train.pkl`: 训练数据集, 该字典包含两个键值: `metainfo``data_list`.
`metainfo` 包含该数据集的基本信息。 `data_list` 是由字典组成的列表,每个字典(以下简称 `info`)包含了单个样本的所有详细信息。
- info\['sample_id'\]:该样本在整个数据集的索引。
- info\['lidar_points'\]:是一个字典,包含了激光雷达点相关的信息。
- info\['lidar_points'\]\['lidar_path'\]:激光雷达点云数据的文件名。
- info\['lidar_points'\]\['num_pts_feats'\]:点的特征维度
- info\['pts_semantic_mask_pth'\]:三维语义分割的标注文件的文件路径
更多细节请参考 [semantickitti_converter.py](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/tools/dataset_converters/semantickitti_converter.py) 和 [update_infos_to_v2.py ](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/tools/dataset_converters/update_infos_to_v2.py) 。
## Train pipeline
下面展示了一个使用 SemanticKITTI 数据集进行 3D 语义分割的典型流程:
```python
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_seg_3d=True,
seg_3d_dtype='np.int32',
seg_offset=2**16,
dataset_type='semantickitti',
backend_args=backend_args),
dict(type='PointSegClassMapping'),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.1, 0.1, 0.1],
),
dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
]
```
- 数据增强:
- `RandomFlip3D`:对输入点云数据进行随机地水平翻转或者垂直翻转。
- `GlobalRotScaleTrans`:对输入点云数据进行旋转、缩放、平移。
## 评估
使用 8 个 GPU 以及 SemanticKITTI 指标评估的 MinkUNet 的示例如下:
```shell
bash tools/dist_test.sh configs/minkunet/minkunet_w32_8xb2-15e_semantickitti.py checkpoints/minkunet_w32_8xb2-15e_semantickitti_20230309_160710-7fa0a6f1.pth 8
```
## 度量指标
通常我们使用平均交并比 (mean Intersection over Union, mIoU) 作为 SemanticKITTI 语义分割任务的度量指标。
具体而言,我们先计算所有类别的 IoU,然后取平均值作为 mIoU。
更多实现细节请参考 [seg_eval.py](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/evaluation/functional/seg_eval.py)。
以下是一个评估结果的样例:
| classes | car | bicycle | motorcycle | truck | bus | person | bicyclist | motorcyclist | road | parking | sidewalk | other-ground | building | fence | vegetation | trunck | terrian | pole | traffic-sign | miou | acc | acc_cls |
| ------- | ------ | ------- | ---------- | ------ | ------ | ------ | --------- | ------------ | ------ | ------- | -------- | ------------ | -------- | ------ | ---------- | ------ | ------- | ------ | ------------ | ------ | ------ | ------- |
| results | 0.9687 | 0.1908 | 0.6313 | 0.8580 | 0.6359 | 0.6818 | 0.8444 | 0.0002 | 0.9353 | 0.4854 | 0.8106 | 0.0024 | 0.9050 | 0.6111 | 0.8822 | 0.6605 | 0.7493 | 0.6442 | 0.4837 | 0.6306 | 0.9202 | 0.6924 |