aashraychegu commited on
Commit
9ab4490
·
1 Parent(s): f31484b

Upload semanticallysegmentdeezglaciers.ipynb

Browse files
semanticallysegmentdeezglaciers.ipynb CHANGED
@@ -67,7 +67,10 @@
67
  "# Call the notebook_login function to log in to Hugging Face's hub\n",
68
  "notebook_login()\n",
69
  "\n",
70
- "# This code imports necessary modules and functions for a machine learning task. It sets up for tensor computations, deep learning, data visualization, working with transformer models, datasets, image manipulations, and more. It also logs into Hugging Face's hub.\n"
 
 
 
71
  ]
72
  },
73
  {
@@ -364,7 +367,7 @@
364
  " fp16=True, # Whether to use 16-bit float precision instead of 32-bit\n",
365
  " tf32=True, # Whether to use tf32 precision instead of 32-bit\n",
366
  " gradient_accumulation_steps=4, # Number of updates steps to accumulate before performing a backward/update pass\n",
367
- " hub_model_id = \"aashraychegu/glacformer\" # The model ID on the Hugging Face model hub\n",
368
  ")\n",
369
  "\n",
370
  "# Define the trainer\n",
@@ -397,7 +400,7 @@
397
  "trainer.model.save_pretrained(\"glacformer\")\n",
398
  "\n",
399
  "# Create a repository object for the specified repository on Hugging Face's hub, cloning from the specified source\n",
400
- "repo = huggingface_hub.Repository(\"glacformer\", clone_from=\"aashraychegu/glacformer\")\n",
401
  "\n",
402
  "# Pull the latest changes from the remote repository\n",
403
  "repo.git_pull()\n",
@@ -438,7 +441,7 @@
438
  "# Define a class for the model\n",
439
  "class glacformer():\n",
440
  " def __init__(self, pipeline=pipeline(\"image-segmentation\",\n",
441
- " model=\"aashraychegu/glacformer\", image_processor=\"nvidia/MiT-b0\"), image_list = glob(\"secondleg/*/cropped_images/*.png\")) -> None:\n",
442
  " self.pipeline = pipeline\n",
443
  " self.image_list = image_list\n",
444
  " def __getitem__(self, index, alpha = 100):\n",
@@ -492,7 +495,7 @@
492
  "name": "python",
493
  "nbconvert_exporter": "python",
494
  "pygments_lexer": "ipython3",
495
- "version": "3.10.7"
496
  },
497
  "widgets": {
498
  "application/vnd.jupyter.widget-state+json": {
 
67
  "# Call the notebook_login function to log in to Hugging Face's hub\n",
68
  "notebook_login()\n",
69
  "\n",
70
+ "# This code imports necessary modules and functions for a machine learning task. It sets up for tensor computations, deep learning, data visualization, working with transformer models, datasets, image manipulations, and more. It also logs into Hugging Face's hub.\n",
71
+ "\n",
72
+ "# This sets the model's huggingface URL\n",
73
+ "hf_model_name = \"glacierscopessegmentation/glacier_segmentation_transformer\"\n"
74
  ]
75
  },
76
  {
 
367
  " fp16=True, # Whether to use 16-bit float precision instead of 32-bit\n",
368
  " tf32=True, # Whether to use tf32 precision instead of 32-bit\n",
369
  " gradient_accumulation_steps=4, # Number of updates steps to accumulate before performing a backward/update pass\n",
370
+ " hub_model_id = hf_model_name # The model ID on the Hugging Face model hub\n",
371
  ")\n",
372
  "\n",
373
  "# Define the trainer\n",
 
400
  "trainer.model.save_pretrained(\"glacformer\")\n",
401
  "\n",
402
  "# Create a repository object for the specified repository on Hugging Face's hub, cloning from the specified source\n",
403
+ "repo = huggingface_hub.Repository(\"glacformer\", clone_from=hf_model_name)\n",
404
  "\n",
405
  "# Pull the latest changes from the remote repository\n",
406
  "repo.git_pull()\n",
 
441
  "# Define a class for the model\n",
442
  "class glacformer():\n",
443
  " def __init__(self, pipeline=pipeline(\"image-segmentation\",\n",
444
+ " model=hf_model_name, image_processor=\"nvidia/MiT-b0\"), image_list = glob(\"secondleg/*/cropped_images/*.png\")) -> None:\n",
445
  " self.pipeline = pipeline\n",
446
  " self.image_list = image_list\n",
447
  " def __getitem__(self, index, alpha = 100):\n",
 
495
  "name": "python",
496
  "nbconvert_exporter": "python",
497
  "pygments_lexer": "ipython3",
498
+ "version": "3.10.11"
499
  },
500
  "widgets": {
501
  "application/vnd.jupyter.widget-state+json": {