Commit
·
f31484b
1
Parent(s):
a3aa0c0
Upload 2 files
Browse files- filter.ipynb +369 -0
- semanticallysegmentdeezglaciers.ipynb +0 -0
filter.ipynb
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Importing all required libraries\n",
|
10 |
+
"\n",
|
11 |
+
"# these are needed for path processing \n",
|
12 |
+
"import os\n",
|
13 |
+
"import pathlib as pl\n",
|
14 |
+
"\n",
|
15 |
+
"#image processing and display\n",
|
16 |
+
"import numpy as np\n",
|
17 |
+
"import PIL\n",
|
18 |
+
"import PIL.Image as Image\n",
|
19 |
+
"import PIL.ImageDraw as ImageDraw\n",
|
20 |
+
"import matplotlib.pyplot as plt\n",
|
21 |
+
"\n",
|
22 |
+
"#these are needed for data processing\n",
|
23 |
+
"import pandas as pd"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 17,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stderr",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"UsageError: Line magic function `%%script` not found.\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"if not create_offset_files:\n",
|
41 |
+
" %%script echo skipping\n",
|
42 |
+
"testset = os.listdir(\"secondleg\")[8] # This is for listing out the contents of the folder\n",
|
43 |
+
"print(testset)\n",
|
44 |
+
"tiff = Image.open(pl.Path(\n",
|
45 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.tiff')) # opens the tiff file\n",
|
46 |
+
"csv = pd.read_csv(pl.Path(\n",
|
47 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.csv')) # opens the csv file\n",
|
48 |
+
"with open(pl.Path( \n",
|
49 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\offset.txt'),\"+x\") as f: # opens the offset file and creates it if it doesn't exist\n",
|
50 |
+
" offset = f.read() # reads the offset file \n",
|
51 |
+
" if offset != '':\n",
|
52 |
+
" offset = int(offset)\n",
|
53 |
+
" else:\n",
|
54 |
+
" offset = 0\n"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"# This is a helper method for chopping up a large glacial scope image into smaller chunks with a width of parameter length and a certain amount of overlap\n",
|
64 |
+
"def window_with_remainder(length, overlap, input_size):\n",
|
65 |
+
" testarray = np.arange(0, input_size)\n",
|
66 |
+
" return np.vstack((testarray[0:length], np.lib.stride_tricks.sliding_window_view(testarray[len(testarray) % length:], length)[::overlap]))[:, [0, -1]] + [0, 1]"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": null,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"# This code draws a rectangle from (40,0) to (100, y_surface) in green, and from (40, y_surface) to (100, y_bed) in white.\n",
|
76 |
+
"# The y_surface and y_bed variables are read from the csv file, and the csv file is read in as a pandas dataframe.\n",
|
77 |
+
"# The first 5 rows of the csv file are also printed.\n",
|
78 |
+
"# this is done to help calibrate the offsets \n",
|
79 |
+
"\n",
|
80 |
+
"testset = os.listdir(\"secondleg\")[10]\n",
|
81 |
+
"print(testset)\n",
|
82 |
+
"\n",
|
83 |
+
"tiff = Image.open(pl.Path(\n",
|
84 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.tiff'))\n",
|
85 |
+
"csv = pd.read_csv(pl.Path(\n",
|
86 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.csv'))\n",
|
87 |
+
"with open(pl.Path(\n",
|
88 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\offset.txt')) as f:\n",
|
89 |
+
" offset = f.read()\n",
|
90 |
+
" if offset == \"\":\n",
|
91 |
+
" offset = 0\n",
|
92 |
+
" else:\n",
|
93 |
+
" offset = int(offset)\n",
|
94 |
+
"print(offset)\n",
|
95 |
+
"img = tiff.copy()\n",
|
96 |
+
"img = img.crop((0,430,img.size[0],1790)) \n",
|
97 |
+
"print(csv.head()) # prints first 5 rows of csv file\n",
|
98 |
+
"csv = csv[[\"x_surface\", \"y_surface\", \"x_bed\", \"y_bed\"]]+offset\n",
|
99 |
+
"line = csv.iloc[-1] # gets last row of csv file\n",
|
100 |
+
"print(csv.head()) # prints first 5 rows of csv file\n",
|
101 |
+
"\n",
|
102 |
+
"\n",
|
103 |
+
"draw = ImageDraw.Draw(img)\n",
|
104 |
+
"draw.rectangle([(40, 0), (100, line[\"y_surface\"])], fill=\"green\") # draws rectangle from (40,0) to (100, y_surface) in green\n",
|
105 |
+
"draw.rectangle([(40, line[\"y_surface\"]),\n",
|
106 |
+
" (100, line[\"y_bed\"])], fill=\"white\") # draws rectangle from (40, y_surface) to (100, y_bed) in white\n"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": null,
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"# This code draws the segmentation masks for each scope from the csv file and saves them\n",
|
116 |
+
"\n",
|
117 |
+
"# Loop over all the files in the \"secondleg\" directory\n",
|
118 |
+
"for testset in os.listdir(\"secondleg\"):\n",
|
119 |
+
" # Print the name of the current file\n",
|
120 |
+
" print(testset)\n",
|
121 |
+
"\n",
|
122 |
+
" # Open the .tiff image file from the specified path\n",
|
123 |
+
" tiff = Image.open(pl.Path(\n",
|
124 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.tiff'))\n",
|
125 |
+
"\n",
|
126 |
+
" # Read the .csv file from the specified path\n",
|
127 |
+
" csv = pd.read_csv(pl.Path(\n",
|
128 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.csv'))\n",
|
129 |
+
"\n",
|
130 |
+
" # Open and read the offset.txt file from the specified path\n",
|
131 |
+
" with open(pl.Path(\n",
|
132 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\offset.txt')) as f:\n",
|
133 |
+
" offset = f.read()\n",
|
134 |
+
" # If the offset is empty, set it to 0\n",
|
135 |
+
" if offset == \"\":\n",
|
136 |
+
" offset = 0\n",
|
137 |
+
" # Otherwise, convert the offset to an integer\n",
|
138 |
+
" else:\n",
|
139 |
+
" offset = int(offset)\n",
|
140 |
+
"\n",
|
141 |
+
" # Make a copy of the image and crop it\n",
|
142 |
+
" img = tiff.copy()\n",
|
143 |
+
" img = img.crop((0, 430, img.size[0], 1790))\n",
|
144 |
+
"\n",
|
145 |
+
" # Convert the image to float and then to grayscale\n",
|
146 |
+
" img_float = Image.fromarray(np.divide(np.array(img), 2**8-1))\n",
|
147 |
+
" img = img_float.convert(\"L\")\n",
|
148 |
+
"\n",
|
149 |
+
" # Save the cropped and converted image to the specified path\n",
|
150 |
+
" img.save(pl.Path(\n",
|
151 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_img_{testset}.png'))\n",
|
152 |
+
"\n",
|
153 |
+
" # Print the mode of the image\n",
|
154 |
+
" print(img.mode)\n",
|
155 |
+
"\n",
|
156 |
+
" # Add the offset to the specified columns of the csv file and reverse the order\n",
|
157 |
+
" csv = csv[[\"x_surface\", \"y_surface\", \"x_bed\", \"y_bed\"]]+offset\n",
|
158 |
+
" csv = csv[::-1].reset_index(drop=True)\n",
|
159 |
+
"\n",
|
160 |
+
" # Create new dataframes for the top and bottom of the image\n",
|
161 |
+
" top = pd.DataFrame(\n",
|
162 |
+
" {\"x_surface\": 0, \"y_surface\": csv.iloc[0][\"y_surface\"], \"x_bed\": 0, \"y_bed\": csv.iloc[0][\"y_bed\"]}, index=[0])\n",
|
163 |
+
" bottom = pd.DataFrame({\"x_surface\": tiff.size[0], \"y_surface\": csv.iloc[-1]\n",
|
164 |
+
" [\"y_surface\"], \"x_bed\": tiff.size[0], \"y_bed\": csv.iloc[-1][\"y_bed\"]}, index=[0])\n",
|
165 |
+
"\n",
|
166 |
+
" # Concatenate the top, csv, and bottom dataframes\n",
|
167 |
+
" csv = pd.concat([top, csv, bottom], ignore_index=True)\n",
|
168 |
+
"\n",
|
169 |
+
" # Create a draw object for the image\n",
|
170 |
+
" draw = ImageDraw.Draw(img)\n",
|
171 |
+
"\n",
|
172 |
+
" # Loop over the rows of the csv file\n",
|
173 |
+
" for i in range(len(csv)-1):\n",
|
174 |
+
" # Get the current and next row\n",
|
175 |
+
" crow = csv.iloc[i]\n",
|
176 |
+
" nrow = csv.iloc[i+1]\n",
|
177 |
+
"\n",
|
178 |
+
" # Define the coordinates for the sky, bed, and bottom polygons\n",
|
179 |
+
" skycooords = [\n",
|
180 |
+
" (crow[\"x_surface\"], 0),\n",
|
181 |
+
" (nrow[\"x_surface\"], 0),\n",
|
182 |
+
" (nrow[\"x_surface\"], nrow[\"y_surface\"]),\n",
|
183 |
+
" (crow[\"x_surface\"], crow[\"y_surface\"])\n",
|
184 |
+
" ]\n",
|
185 |
+
" bedcoords = [\n",
|
186 |
+
" (crow[\"x_surface\"], crow[\"y_surface\"]),\n",
|
187 |
+
" (nrow[\"x_surface\"], nrow[\"y_surface\"]),\n",
|
188 |
+
" (nrow[\"x_bed\"], nrow[\"y_bed\"]),\n",
|
189 |
+
" (crow[\"x_bed\"], crow[\"y_bed\"])\n",
|
190 |
+
" ]\n",
|
191 |
+
" btmcoords = [\n",
|
192 |
+
" (crow[\"x_bed\"], crow[\"y_bed\"]),\n",
|
193 |
+
" (nrow[\"x_bed\"], nrow[\"y_bed\"]),\n",
|
194 |
+
" (nrow[\"x_bed\"], tiff.size[1]),\n",
|
195 |
+
" (crow[\"x_bed\"], tiff.size[1])\n",
|
196 |
+
" ]\n",
|
197 |
+
"\n",
|
198 |
+
" # Draw the polygons on the image\n",
|
199 |
+
" draw.polygon(skycooords, fill=\"#000000\")\n",
|
200 |
+
" draw.polygon(bedcoords, fill=\"#010101\")\n",
|
201 |
+
" draw.polygon(btmcoords, fill=\"#020202\")\n",
|
202 |
+
"\n",
|
203 |
+
" # Save the image with the drawn polygons to the specified path\n",
|
204 |
+
" img.save(pl.Path(\n",
|
205 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\img_mask_{testset}.png'))\n",
|
206 |
+
"\n",
|
207 |
+
" # Print the mode of the image\n",
|
208 |
+
" print(img.mode)\n"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": []
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"# This code is used to crop the images and masks in the second leg data set into 400x400 images.\n",
|
225 |
+
"\n",
|
226 |
+
"# Loop over all the files in the \"secondleg\" directory\n",
|
227 |
+
"for testset in os.listdir(\"secondleg\"):\n",
|
228 |
+
" # Print the name of the current file\n",
|
229 |
+
" print(testset)\n",
|
230 |
+
"\n",
|
231 |
+
" # Open the cropped image file from the specified path\n",
|
232 |
+
" cimg = Image.open(pl.Path(\n",
|
233 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_img_{testset}.png'))\n",
|
234 |
+
"\n",
|
235 |
+
" # Open the image mask file from the specified path\n",
|
236 |
+
" mask = Image.open(pl.Path(\n",
|
237 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\img_mask_{testset}.png'))\n",
|
238 |
+
"\n",
|
239 |
+
" # Calculate the sections to crop the image into, with each section being 400 pixels wide and an overlap of 80 pixels\n",
|
240 |
+
" cropsection = window_with_remainder(400, 80, cimg.size[0])\n",
|
241 |
+
"\n",
|
242 |
+
" # Try to create directories for the cropped images and masks\n",
|
243 |
+
" try:\n",
|
244 |
+
" # Create a directory for the cropped images\n",
|
245 |
+
" os.mkdir(pl.Path(\n",
|
246 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_images'))\n",
|
247 |
+
"\n",
|
248 |
+
" # Create a directory for the cropped masks\n",
|
249 |
+
" os.mkdir(pl.Path(\n",
|
250 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_masks'))\n",
|
251 |
+
" # If the directories already exist, pass\n",
|
252 |
+
" except:\n",
|
253 |
+
" pass\n",
|
254 |
+
"\n",
|
255 |
+
" # Loop over the sections to crop the image into\n",
|
256 |
+
" for i in cropsection:\n",
|
257 |
+
" # Crop the image to the current section, resize it to 400x400, and save it to the specified path\n",
|
258 |
+
" cimg.crop((i[0], 0, i[1], cimg.size[1])).resize((400, 400)).save(pl.Path(\n",
|
259 |
+
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_images\\cimg-{testset}_{i[0]}_{i[1]}.png'))\n"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"# Import the notebook_login function from the huggingface_hub module\n",
|
269 |
+
"from huggingface_hub import notebook_login\n",
|
270 |
+
"\n",
|
271 |
+
"# Import the Dataset, DatasetDict, and Image classes from the datasets module\n",
|
272 |
+
"from datasets import Dataset, DatasetDict, Image\n",
|
273 |
+
"\n",
|
274 |
+
"# Import the glob function from the glob module\n",
|
275 |
+
"from glob import glob\n",
|
276 |
+
"\n",
|
277 |
+
"# Use the glob function to get a list of all .png image file paths in the \"secondleg/*/cropped_images/\" directory\n",
|
278 |
+
"images = glob(\"secondleg/*/cropped_images/*.png\")\n",
|
279 |
+
"\n",
|
280 |
+
"# Use the glob function to get a list of all .png mask file paths in the \"secondleg/*/cropped_masks/\" directory\n",
|
281 |
+
"masks = glob(\"secondleg/*/cropped_masks/*.png\")\n",
|
282 |
+
"\n",
|
283 |
+
"# Define a function to create a dataset from image and label paths\n",
|
284 |
+
"\n",
|
285 |
+
"\n",
|
286 |
+
"def create_dataset(image_paths, label_paths):\n",
|
287 |
+
" # Create a Dataset object from a dictionary of image and label paths\n",
|
288 |
+
" dataset = Dataset.from_dict({\"image\": sorted(image_paths),\n",
|
289 |
+
" \"label\": sorted(label_paths)})\n",
|
290 |
+
" # Cast the \"image\" column of the dataset to the Image class\n",
|
291 |
+
" dataset = dataset.cast_column(\"image\", Image())\n",
|
292 |
+
" # Cast the \"label\" column of the dataset to the Image class\n",
|
293 |
+
" dataset = dataset.cast_column(\"label\", Image())\n",
|
294 |
+
"\n",
|
295 |
+
" # Return the dataset\n",
|
296 |
+
" return dataset\n",
|
297 |
+
"\n",
|
298 |
+
"\n",
|
299 |
+
"# Create a Dataset object using the create_dataset function and the image and mask file paths\n",
|
300 |
+
"dataset = create_dataset(images, masks)\n",
|
301 |
+
"\n",
|
302 |
+
"# Call the notebook_login function to log in to Hugging Face\n",
|
303 |
+
"notebook_login()\n"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"cell_type": "code",
|
308 |
+
"execution_count": null,
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": [
|
312 |
+
"# Call the push_to_hub method on the dataset object, specifying the repository name and setting it to private\n",
|
313 |
+
"dataset.push_to_hub(\"aashraychegu/glacier_scopes\", private=True)\n"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": 1,
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [
|
321 |
+
{
|
322 |
+
"data": {
|
323 |
+
"text/plain": [
|
324 |
+
"8456"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
"execution_count": 1,
|
328 |
+
"metadata": {},
|
329 |
+
"output_type": "execute_result"
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"source": [
|
333 |
+
"# Import the glob function from the glob module\n",
|
334 |
+
"from glob import glob\n",
|
335 |
+
"\n",
|
336 |
+
"# Use the glob function to get a list of all .png image file paths in the \"secondleg/*/cropped_images/\" directory\n",
|
337 |
+
"images = glob(\"secondleg/*/cropped_images/*.png\")\n",
|
338 |
+
"\n",
|
339 |
+
"# Use the glob function to get a list of all .png mask file paths in the \"secondleg/*/cropped_masks/\" directory\n",
|
340 |
+
"masks = glob(\"secondleg/*/cropped_masks/*.png\")\n",
|
341 |
+
"\n",
|
342 |
+
"# Print the length of the images list, which represents the total number of image files found\n",
|
343 |
+
"len(images)\n"
|
344 |
+
]
|
345 |
+
}
|
346 |
+
],
|
347 |
+
"metadata": {
|
348 |
+
"kernelspec": {
|
349 |
+
"display_name": "Python 3",
|
350 |
+
"language": "python",
|
351 |
+
"name": "python3"
|
352 |
+
},
|
353 |
+
"language_info": {
|
354 |
+
"codemirror_mode": {
|
355 |
+
"name": "ipython",
|
356 |
+
"version": 3
|
357 |
+
},
|
358 |
+
"file_extension": ".py",
|
359 |
+
"mimetype": "text/x-python",
|
360 |
+
"name": "python",
|
361 |
+
"nbconvert_exporter": "python",
|
362 |
+
"pygments_lexer": "ipython3",
|
363 |
+
"version": "3.10.7"
|
364 |
+
},
|
365 |
+
"orig_nbformat": 4
|
366 |
+
},
|
367 |
+
"nbformat": 4,
|
368 |
+
"nbformat_minor": 2
|
369 |
+
}
|
semanticallysegmentdeezglaciers.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|