File size: 14,722 Bytes
f31484b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Importing all required libraries\n",
"\n",
"# these are needed for path processing \n",
"import os\n",
"import pathlib as pl\n",
"\n",
"#image processing and display\n",
"import numpy as np\n",
"import PIL\n",
"import PIL.Image as Image\n",
"import PIL.ImageDraw as ImageDraw\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#these are needed for data processing\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"UsageError: Line magic function `%%script` not found.\n"
]
}
],
"source": [
"if not create_offset_files:\n",
" %%script echo skipping\n",
"testset = os.listdir(\"secondleg\")[8] # This is for listing out the contents of the folder\n",
"print(testset)\n",
"tiff = Image.open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.tiff')) # opens the tiff file\n",
"csv = pd.read_csv(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.csv')) # opens the csv file\n",
"with open(pl.Path( \n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\offset.txt'),\"+x\") as f: # opens the offset file and creates it if it doesn't exist\n",
" offset = f.read() # reads the offset file \n",
" if offset != '':\n",
" offset = int(offset)\n",
" else:\n",
" offset = 0\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This is a helper method for chopping up a large glacial scope image into smaller chunks with a width of parameter length and a certain amount of overlap\n",
"def window_with_remainder(length, overlap, input_size):\n",
" testarray = np.arange(0, input_size)\n",
" return np.vstack((testarray[0:length], np.lib.stride_tricks.sliding_window_view(testarray[len(testarray) % length:], length)[::overlap]))[:, [0, -1]] + [0, 1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This code draws a rectangle from (40,0) to (100, y_surface) in green, and from (40, y_surface) to (100, y_bed) in white.\n",
"# The y_surface and y_bed variables are read from the csv file, and the csv file is read in as a pandas dataframe.\n",
"# The first 5 rows of the csv file are also printed.\n",
"# this is done to help calibrate the offsets \n",
"\n",
"testset = os.listdir(\"secondleg\")[10]\n",
"print(testset)\n",
"\n",
"tiff = Image.open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.tiff'))\n",
"csv = pd.read_csv(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.csv'))\n",
"with open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\offset.txt')) as f:\n",
" offset = f.read()\n",
" if offset == \"\":\n",
" offset = 0\n",
" else:\n",
" offset = int(offset)\n",
"print(offset)\n",
"img = tiff.copy()\n",
"img = img.crop((0,430,img.size[0],1790)) \n",
"print(csv.head()) # prints first 5 rows of csv file\n",
"csv = csv[[\"x_surface\", \"y_surface\", \"x_bed\", \"y_bed\"]]+offset\n",
"line = csv.iloc[-1] # gets last row of csv file\n",
"print(csv.head()) # prints first 5 rows of csv file\n",
"\n",
"\n",
"draw = ImageDraw.Draw(img)\n",
"draw.rectangle([(40, 0), (100, line[\"y_surface\"])], fill=\"green\") # draws rectangle from (40,0) to (100, y_surface) in green\n",
"draw.rectangle([(40, line[\"y_surface\"]),\n",
" (100, line[\"y_bed\"])], fill=\"white\") # draws rectangle from (40, y_surface) to (100, y_bed) in white\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This code draws the segmentation masks for each scope from the csv file and saves them\n",
"\n",
"# Loop over all the files in the \"secondleg\" directory\n",
"for testset in os.listdir(\"secondleg\"):\n",
" # Print the name of the current file\n",
" print(testset)\n",
"\n",
" # Open the .tiff image file from the specified path\n",
" tiff = Image.open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.tiff'))\n",
"\n",
" # Read the .csv file from the specified path\n",
" csv = pd.read_csv(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\{testset}.csv'))\n",
"\n",
" # Open and read the offset.txt file from the specified path\n",
" with open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\offset.txt')) as f:\n",
" offset = f.read()\n",
" # If the offset is empty, set it to 0\n",
" if offset == \"\":\n",
" offset = 0\n",
" # Otherwise, convert the offset to an integer\n",
" else:\n",
" offset = int(offset)\n",
"\n",
" # Make a copy of the image and crop it\n",
" img = tiff.copy()\n",
" img = img.crop((0, 430, img.size[0], 1790))\n",
"\n",
" # Convert the image to float and then to grayscale\n",
" img_float = Image.fromarray(np.divide(np.array(img), 2**8-1))\n",
" img = img_float.convert(\"L\")\n",
"\n",
" # Save the cropped and converted image to the specified path\n",
" img.save(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_img_{testset}.png'))\n",
"\n",
" # Print the mode of the image\n",
" print(img.mode)\n",
"\n",
" # Add the offset to the specified columns of the csv file and reverse the order\n",
" csv = csv[[\"x_surface\", \"y_surface\", \"x_bed\", \"y_bed\"]]+offset\n",
" csv = csv[::-1].reset_index(drop=True)\n",
"\n",
" # Create new dataframes for the top and bottom of the image\n",
" top = pd.DataFrame(\n",
" {\"x_surface\": 0, \"y_surface\": csv.iloc[0][\"y_surface\"], \"x_bed\": 0, \"y_bed\": csv.iloc[0][\"y_bed\"]}, index=[0])\n",
" bottom = pd.DataFrame({\"x_surface\": tiff.size[0], \"y_surface\": csv.iloc[-1]\n",
" [\"y_surface\"], \"x_bed\": tiff.size[0], \"y_bed\": csv.iloc[-1][\"y_bed\"]}, index=[0])\n",
"\n",
" # Concatenate the top, csv, and bottom dataframes\n",
" csv = pd.concat([top, csv, bottom], ignore_index=True)\n",
"\n",
" # Create a draw object for the image\n",
" draw = ImageDraw.Draw(img)\n",
"\n",
" # Loop over the rows of the csv file\n",
" for i in range(len(csv)-1):\n",
" # Get the current and next row\n",
" crow = csv.iloc[i]\n",
" nrow = csv.iloc[i+1]\n",
"\n",
" # Define the coordinates for the sky, bed, and bottom polygons\n",
" skycooords = [\n",
" (crow[\"x_surface\"], 0),\n",
" (nrow[\"x_surface\"], 0),\n",
" (nrow[\"x_surface\"], nrow[\"y_surface\"]),\n",
" (crow[\"x_surface\"], crow[\"y_surface\"])\n",
" ]\n",
" bedcoords = [\n",
" (crow[\"x_surface\"], crow[\"y_surface\"]),\n",
" (nrow[\"x_surface\"], nrow[\"y_surface\"]),\n",
" (nrow[\"x_bed\"], nrow[\"y_bed\"]),\n",
" (crow[\"x_bed\"], crow[\"y_bed\"])\n",
" ]\n",
" btmcoords = [\n",
" (crow[\"x_bed\"], crow[\"y_bed\"]),\n",
" (nrow[\"x_bed\"], nrow[\"y_bed\"]),\n",
" (nrow[\"x_bed\"], tiff.size[1]),\n",
" (crow[\"x_bed\"], tiff.size[1])\n",
" ]\n",
"\n",
" # Draw the polygons on the image\n",
" draw.polygon(skycooords, fill=\"#000000\")\n",
" draw.polygon(bedcoords, fill=\"#010101\")\n",
" draw.polygon(btmcoords, fill=\"#020202\")\n",
"\n",
" # Save the image with the drawn polygons to the specified path\n",
" img.save(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\img_mask_{testset}.png'))\n",
"\n",
" # Print the mode of the image\n",
" print(img.mode)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This code is used to crop the images and masks in the second leg data set into 400x400 images.\n",
"\n",
"# Loop over all the files in the \"secondleg\" directory\n",
"for testset in os.listdir(\"secondleg\"):\n",
" # Print the name of the current file\n",
" print(testset)\n",
"\n",
" # Open the cropped image file from the specified path\n",
" cimg = Image.open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_img_{testset}.png'))\n",
"\n",
" # Open the image mask file from the specified path\n",
" mask = Image.open(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\img_mask_{testset}.png'))\n",
"\n",
" # Calculate the sections to crop the image into, with each section being 400 pixels wide and an overlap of 80 pixels\n",
" cropsection = window_with_remainder(400, 80, cimg.size[0])\n",
"\n",
" # Try to create directories for the cropped images and masks\n",
" try:\n",
" # Create a directory for the cropped images\n",
" os.mkdir(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_images'))\n",
"\n",
" # Create a directory for the cropped masks\n",
" os.mkdir(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_masks'))\n",
" # If the directories already exist, pass\n",
" except:\n",
" pass\n",
"\n",
" # Loop over the sections to crop the image into\n",
" for i in cropsection:\n",
" # Crop the image to the current section, resize it to 400x400, and save it to the specified path\n",
" cimg.crop((i[0], 0, i[1], cimg.size[1])).resize((400, 400)).save(pl.Path(\n",
" rf'C:\\Users\\aashr\\Desktop\\research\\glaciers\\secondleg\\{testset}\\cropped_images\\cimg-{testset}_{i[0]}_{i[1]}.png'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import the notebook_login function from the huggingface_hub module\n",
"from huggingface_hub import notebook_login\n",
"\n",
"# Import the Dataset, DatasetDict, and Image classes from the datasets module\n",
"from datasets import Dataset, DatasetDict, Image\n",
"\n",
"# Import the glob function from the glob module\n",
"from glob import glob\n",
"\n",
"# Use the glob function to get a list of all .png image file paths in the \"secondleg/*/cropped_images/\" directory\n",
"images = glob(\"secondleg/*/cropped_images/*.png\")\n",
"\n",
"# Use the glob function to get a list of all .png mask file paths in the \"secondleg/*/cropped_masks/\" directory\n",
"masks = glob(\"secondleg/*/cropped_masks/*.png\")\n",
"\n",
"# Define a function to create a dataset from image and label paths\n",
"\n",
"\n",
"def create_dataset(image_paths, label_paths):\n",
" # Create a Dataset object from a dictionary of image and label paths\n",
" dataset = Dataset.from_dict({\"image\": sorted(image_paths),\n",
" \"label\": sorted(label_paths)})\n",
" # Cast the \"image\" column of the dataset to the Image class\n",
" dataset = dataset.cast_column(\"image\", Image())\n",
" # Cast the \"label\" column of the dataset to the Image class\n",
" dataset = dataset.cast_column(\"label\", Image())\n",
"\n",
" # Return the dataset\n",
" return dataset\n",
"\n",
"\n",
"# Create a Dataset object using the create_dataset function and the image and mask file paths\n",
"dataset = create_dataset(images, masks)\n",
"\n",
"# Call the notebook_login function to log in to Hugging Face\n",
"notebook_login()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Call the push_to_hub method on the dataset object, specifying the repository name and setting it to private\n",
"dataset.push_to_hub(\"aashraychegu/glacier_scopes\", private=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8456"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Import the glob function from the glob module\n",
"from glob import glob\n",
"\n",
"# Use the glob function to get a list of all .png image file paths in the \"secondleg/*/cropped_images/\" directory\n",
"images = glob(\"secondleg/*/cropped_images/*.png\")\n",
"\n",
"# Use the glob function to get a list of all .png mask file paths in the \"secondleg/*/cropped_masks/\" directory\n",
"masks = glob(\"secondleg/*/cropped_masks/*.png\")\n",
"\n",
"# Print the length of the images list, which represents the total number of image files found\n",
"len(images)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|