ghost613's picture
gemma2_on_korean_summary
e2028b6 verified
metadata
license: other
library_name: peft
tags:
  - generated_from_trainer
base_model: beomi/gemma-ko-2b
model-index:
  - name: gemma2_on_korean_summary
    results: []

gemma2_on_korean_summary

This model is a fine-tuned version of beomi/gemma-ko-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9622

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.6606 0.26 20 1.5454
1.4381 0.53 40 1.3247
1.2548 0.79 60 1.1921
1.1574 1.05 80 1.1227
1.0968 1.32 100 1.0727
1.0485 1.58 120 1.0316
1.0258 1.84 140 1.0019
0.9582 2.11 160 0.9785
0.906 2.37 180 0.9575
0.8837 2.63 200 0.9429
0.8763 2.89 220 0.9247
0.8295 3.16 240 0.9213
0.7799 3.42 260 0.9122
0.7742 3.68 280 0.8992
0.7708 3.95 300 0.8918
0.7196 4.21 320 0.8952
0.6908 4.47 340 0.8917
0.6977 4.74 360 0.8841
0.6789 5.0 380 0.8764
0.6198 5.26 400 0.9003
0.6203 5.53 420 0.9030
0.6169 5.79 440 0.8913
0.6111 6.05 460 0.8935
0.564 6.32 480 0.9096
0.5819 6.58 500 0.9027
0.5673 6.84 520 0.8997
0.5382 7.11 540 0.9181
0.5228 7.37 560 0.9197
0.5197 7.63 580 0.9254
0.5319 7.89 600 0.9158
0.4954 8.16 620 0.9394
0.4954 8.42 640 0.9345
0.4719 8.68 660 0.9388
0.4866 8.95 680 0.9390
0.4739 9.21 700 0.9528
0.4591 9.47 720 0.9534
0.4478 9.74 740 0.9542
0.4547 10.0 760 0.9539
0.4379 10.26 780 0.9617
0.4348 10.53 800 0.9622

Framework versions

  • PEFT 0.8.2
  • Transformers 4.38.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0