|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: microsoft/mdeberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: custom_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# custom_model |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0004 |
|
- Accuracy: 1.0 |
|
- Precision: 1.0 |
|
- Recall: 1.0 |
|
- F1: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6805 | 0.5556 | 20 | 0.5965 | 0.7606 | 0 | 0.0 | 0 | |
|
| 0.5306 | 1.1111 | 40 | 0.4812 | 0.7606 | 0 | 0.0 | 0 | |
|
| 0.3863 | 1.6667 | 60 | 0.2857 | 0.7606 | 0 | 0.0 | 0 | |
|
| 0.234 | 2.2222 | 80 | 0.1738 | 0.9437 | 1.0 | 0.7647 | 0.8667 | |
|
| 0.0583 | 2.7778 | 100 | 0.0827 | 0.9859 | 1.0 | 0.9412 | 0.9697 | |
|
| 0.0314 | 3.3333 | 120 | 0.0036 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0926 | 3.8889 | 140 | 0.0873 | 0.9718 | 1.0 | 0.8824 | 0.9375 | |
|
| 0.0019 | 4.4444 | 160 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0556 | 5.0 | 180 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0018 | 5.5556 | 200 | 0.0467 | 0.9859 | 1.0 | 0.9412 | 0.9697 | |
|
| 0.0011 | 6.1111 | 220 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0012 | 6.6667 | 240 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0011 | 7.2222 | 260 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0012 | 7.7778 | 280 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.4.1 |
|
- Tokenizers 0.21.1 |
|
|