|
--- |
|
license: mit |
|
base_model: |
|
- timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k |
|
pipeline_tag: image-classification |
|
library_name: timm |
|
--- |
|
|
|
# PowerPoint slide classifier |
|
|
|
This is a classifier to classify 5 types of PowerPoint slide layouts. Finetuned from `timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k` and trained on 10k powerpoint slide images. |
|
|
|
* `0`: Common content slide |
|
* `1`: End slide |
|
* `2`: Start slide |
|
* `3`: Subtitle slide |
|
* `4`: Subtitle list slide |
|
|
|
## Usage |
|
|
|
### Install timm and dependencies |
|
|
|
```bash |
|
pip install timm==1.0.15 torch==2.7.0 torchvision==0.22.0 |
|
``` |
|
|
|
### Inference |
|
|
|
Use the following code to classify images from a folder. |
|
|
|
```python |
|
import os |
|
import timm |
|
import torch |
|
from PIL import Image |
|
from torchvision import transforms |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
image_folder = 'path_to_images' |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225] |
|
) |
|
]) |
|
|
|
model = timm.create_model('swin_base_patch4_window7_224', pretrained=False, num_classes=5) |
|
model.load_state_dict(torch.load('pytorch_model.bin')) |
|
model.to(device) |
|
model.eval() |
|
|
|
image_files = [f for f in os.listdir(image_folder) if f.lower().endswith('.png')] |
|
|
|
idx_to_class = { |
|
0: 'content', |
|
1: 'end', |
|
2: 'start', |
|
3: 'subt', |
|
4: 'subtl' |
|
} |
|
|
|
with torch.no_grad(): |
|
for image_name in image_files: |
|
image_path = os.path.join(image_folder, image_name) |
|
image = Image.open(image_path).convert('RGB') |
|
input_tensor = transform(image).unsqueeze(0).to(device) |
|
|
|
output = model(input_tensor) |
|
predicted_class = torch.argmax(output, dim=1).item() |
|
predicted_label = idx_to_class[predicted_class] |
|
|
|
print(f"{image_name} --> {predicted_label}") |
|
``` |
|
|