mdeberta-semeval25_maxf1_fold3
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.3380
- Precision Samples: 0.1633
- Recall Samples: 0.5122
- F1 Samples: 0.2311
- Precision Macro: 0.8671
- Recall Macro: 0.2933
- F1 Macro: 0.2022
- Precision Micro: 0.1506
- Recall Micro: 0.3994
- F1 Micro: 0.2188
- Precision Weighted: 0.6317
- Recall Weighted: 0.3994
- F1 Weighted: 0.1249
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.0696 | 1.0 | 19 | 10.6040 | 1.0 | 0.0 | 0.0 | 1.0 | 0.1556 | 0.1556 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
10.193 | 2.0 | 38 | 10.2581 | 0.1747 | 0.2540 | 0.1918 | 0.9816 | 0.1789 | 0.1641 | 0.1753 | 0.1445 | 0.1584 | 0.8838 | 0.1445 | 0.0480 |
9.6612 | 3.0 | 57 | 10.0671 | 0.1425 | 0.2939 | 0.1781 | 0.9714 | 0.1889 | 0.1637 | 0.1456 | 0.1700 | 0.1569 | 0.8577 | 0.1700 | 0.0472 |
9.0942 | 4.0 | 76 | 9.8758 | 0.1474 | 0.3411 | 0.1891 | 0.9189 | 0.2076 | 0.1690 | 0.1385 | 0.2181 | 0.1694 | 0.7494 | 0.2181 | 0.0607 |
9.3042 | 5.0 | 95 | 9.6689 | 0.1613 | 0.4720 | 0.2241 | 0.8971 | 0.2654 | 0.1874 | 0.1473 | 0.3598 | 0.2091 | 0.6810 | 0.3598 | 0.1058 |
9.0703 | 6.0 | 114 | 9.5397 | 0.1626 | 0.4743 | 0.2237 | 0.8953 | 0.2670 | 0.1855 | 0.1471 | 0.3626 | 0.2093 | 0.6781 | 0.3626 | 0.1029 |
9.5375 | 7.0 | 133 | 9.4382 | 0.1630 | 0.4948 | 0.2286 | 0.8764 | 0.2833 | 0.1983 | 0.1506 | 0.3853 | 0.2166 | 0.6480 | 0.3853 | 0.1220 |
8.4717 | 8.0 | 152 | 9.3612 | 0.1642 | 0.5086 | 0.2317 | 0.8738 | 0.2881 | 0.1987 | 0.1481 | 0.3966 | 0.2157 | 0.6417 | 0.3966 | 0.1207 |
9.1265 | 9.0 | 171 | 9.3158 | 0.1621 | 0.5051 | 0.2286 | 0.8604 | 0.2921 | 0.1978 | 0.1478 | 0.3994 | 0.2158 | 0.6221 | 0.3994 | 0.1195 |
9.0143 | 10.0 | 190 | 9.3380 | 0.1633 | 0.5122 | 0.2311 | 0.8671 | 0.2933 | 0.2022 | 0.1506 | 0.3994 | 0.2188 | 0.6317 | 0.3994 | 0.1249 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 164
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for g-assismoraes/mdeberta-semeval25_maxf1_fold3
Base model
microsoft/mdeberta-v3-base