|
---
|
|
language:
|
|
- zho
|
|
- eng
|
|
- fra
|
|
- spa
|
|
- por
|
|
- deu
|
|
- ita
|
|
- rus
|
|
- jpn
|
|
- kor
|
|
- vie
|
|
- tha
|
|
- ara
|
|
base_model:
|
|
- Qwen/Qwen2.5-7B-Instruct
|
|
library_name: transformers
|
|
---
|
|
## Introduction
|
|
FLock Web3 Agent Model is a specialized LLM designed to address complex queries in the Web3 ecosystem, with a focus on DeFi, blockchain interoperability, on-chain analytics, and etc.. The model excels in function-calling reasoning, enabling it to break down intricate user requests into actionable steps, interact with external APIs, and provide data-driven insights for Web3 applications. It is tailored for users ranging from developers and researchers to investors navigating the decentralized landscape.
|
|
## Requirements
|
|
We advise you to use the latest version of `transformers`.
|
|
|
|
## Quickstart
|
|
|
|
Given a query and a list of available tools. The model generate function calls using the provided tools to respond the query correctly.
|
|
|
|
**Example query and tools format**
|
|
|
|
```python
|
|
input_example=
|
|
{
|
|
"query": "Track crosschain message verification, implement timeout recovery procedures.",
|
|
"tools": [
|
|
{"type": "function", "function": {"name": "track_crosschain_message", "description": "Track the status of a crosschain message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}}}}},
|
|
{"type": "function", "function": {"name": "schedule_timeout_check", "description": "Schedule a timeout check for a message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}, "timeout": {"type": "integer"}}}}}
|
|
]
|
|
}
|
|
|
|
```
|
|
|
|
**Function calling generation**
|
|
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import json
|
|
|
|
model_name = "flock-io/Flock_Web3_Agent_Model"
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
torch_dtype="auto",
|
|
device_map="auto"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required -"
|
|
+ json.dumps(input_example["tools"], ensure_ascii=False)},
|
|
{"role": "user", "content": input_example["query"]}
|
|
]
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
generated_ids = model.generate(
|
|
**model_inputs,
|
|
max_new_tokens=3000
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
```
|
|
|
|
The output text is in the string format
|
|
|
|
```
|
|
[
|
|
{"name": "track_crosschain_message", "arguments": {"message_id": "msg12345"}},
|
|
{"name": "schedule_timeout_check", "arguments": {"message_id": "msg12345", "timeout": "30"}}
|
|
]
|
|
``` |