|
--- |
|
language: |
|
- en |
|
base_model: |
|
- Qwen/Qwen2.5-7B-Instruct |
|
library_name: transformers |
|
--- |
|
## Introduction |
|
FLock Web3 Agent Model is a specialized LLM designed to address complex queries in the Web3 ecosystem, with a focus on DeFi, blockchain interoperability, on-chain analytics, and etc.. The model excels in function-calling reasoning, enabling it to break down intricate user requests into actionable steps, interact with external APIs, and provide data-driven insights for Web3 applications. It is tailored for users ranging from developers and researchers to investors navigating the decentralized landscape. |
|
## Requirements |
|
We advise you to use the latest version of `transformers`. |
|
|
|
## Quickstart |
|
|
|
Given a query and a list of available tools. The model generate function calls using the provided tools to respond the query correctly. |
|
|
|
**Example query and tools format** |
|
|
|
```python |
|
input_example= |
|
{ |
|
"query": "Track crosschain message verification, implement timeout recovery procedures.", |
|
"tools": [ |
|
{"type": "function", "function": {"name": "track_crosschain_message", "description": "Track the status of a crosschain message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}}}}}, |
|
{"type": "function", "function": {"name": "schedule_timeout_check", "description": "Schedule a timeout check for a message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}, "timeout": {"type": "integer"}}}}} |
|
] |
|
} |
|
|
|
``` |
|
|
|
**Function calling generation** |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import json |
|
|
|
model_name = "flock-io/Flock_Web3_Agent_Model" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required -" |
|
+ json.dumps(input_example["tools"], ensure_ascii=False)}, |
|
{"role": "user", "content": input_example["query"]} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=3000 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
The output text is in the string format |
|
|
|
``` |
|
[ |
|
{"name": "track_crosschain_message", "arguments": {"message_id": "msg12345"}}, |
|
{"name": "schedule_timeout_check", "arguments": {"message_id": "msg12345", "timeout": "30"}} |
|
] |
|
``` |