See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-14B-Instruct
bf16: true
chat_template: llama3
data_processes: 8
dataset_prepared_path: null
datasets:
- data_files:
- d1df3a08281b6407_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d1df3a08281b6407_train_data.json
type:
field_instruction: description
field_output: dreams
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: filipesantoscv11/cbd823a7-12f6-432b-9c7e-e27aa4379f4a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.01e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.03
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 6
mlflow_experiment_name: /tmp/G.O.D/d1df3a08281b6407_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e6c94b6f-bf4b-4c52-8828-bfb11b3400e3
wandb_project: cold9
wandb_run: your_name
wandb_runid: e6c94b6f-bf4b-4c52-8828-bfb11b3400e3
warmup_steps: 20
weight_decay: 0.0
xformers_attention: null
cbd823a7-12f6-432b-9c7e-e27aa4379f4a
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7498
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.01e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 3.3774 |
3.7735 | 0.0142 | 50 | 3.0717 |
3.4553 | 0.0284 | 100 | 2.8566 |
3.2109 | 0.0426 | 150 | 2.7626 |
3.1014 | 0.0569 | 200 | 2.7498 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.