Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
data_processes: 8
dataset_prepared_path: null
datasets:
- data_files:
  - a25339cd2825a01d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a25339cd2825a01d_train_data.json
  type:
    field_instruction: task
    field_output: solution
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: filipesantoscv11/7f19b446-8ee7-4286-809e-a3ff9201dfd7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.01e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.03
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 6
mlflow_experiment_name: /tmp/G.O.D/a25339cd2825a01d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 69747109-b04b-48ba-98b4-17e81d25983a
wandb_project: cold9
wandb_run: your_name
wandb_runid: 69747109-b04b-48ba-98b4-17e81d25983a
warmup_steps: 20
weight_decay: 0.0
xformers_attention: null

7f19b446-8ee7-4286-809e-a3ff9201dfd7

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.01e-05
  • train_batch_size: 6
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0016 1 10.3765
10.3758 0.0776 50 10.3754
10.3742 0.1553 100 10.3744
10.3741 0.2329 150 10.3736
10.3742 0.3106 200 10.3734

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for filipesantoscv11/7f19b446-8ee7-4286-809e-a3ff9201dfd7