wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5916
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.9043 1.0 113 0.46 1.8057
1.2603 2.0 226 0.58 1.3549
1.1442 3.0 339 0.68 1.0001
0.6053 4.0 452 0.68 0.9841
0.5621 5.0 565 0.69 0.9519
0.541 6.0 678 0.79 0.6576
0.3868 7.0 791 0.86 0.4867
0.1518 8.0 904 0.84 0.5443
0.1699 9.0 1017 0.91 0.4024
0.0798 10.0 1130 0.5878 0.86
0.1869 11.0 1243 0.6483 0.86
0.1439 12.0 1356 0.5916 0.87

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for fierce74/wav2vec2-base-finetuned-gtzan

Finetuned
(727)
this model

Dataset used to train fierce74/wav2vec2-base-finetuned-gtzan

Evaluation results