Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/codegemma-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ba1ba8658f2ab52d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ba1ba8658f2ab52d_train_data.json
  type:
    field_input: passage
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
ddp_find_unused_parameters: false
distributed_type: ddp
early_stopping_patience: null
env:
  CUDA_VISIBLE_DEVICES: 0,1
  MASTER_ADDR: localhost
  MASTER_PORT: '29500'
  NCCL_DEBUG: INFO
  NCCL_IB_DISABLE: '0'
  NCCL_P2P_DISABLE: '0'
  NCCL_P2P_LEVEL: NVL
  PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
  WORLD_SIZE: '2'
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: fats-fme/5ac501b9-bbb0-4575-b202-dbee8b48ba8c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory_MB: 65000
max_steps: 303
micro_batch_size: 2
mlflow_experiment_name: /tmp/ba1ba8658f2ab52d_train_data.json
model_type: AutoModelForCausalLM
num_devices: 2
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5ac501b9-bbb0-4575-b202-dbee8b48ba8c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5ac501b9-bbb0-4575-b202-dbee8b48ba8c
warmup_steps: 50
world_size: 2
xformers_attention: true

5ac501b9-bbb0-4575-b202-dbee8b48ba8c

This model is a fine-tuned version of unsloth/codegemma-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 303

Training results

Training Loss Epoch Step Validation Loss
4.2047 0.0007 1 nan
1.8281 0.0496 76 nan
1.4804 0.0992 152 nan
1.7097 0.1489 228 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for fats-fme/5ac501b9-bbb0-4575-b202-dbee8b48ba8c

Adapter
(268)
this model