giulio98 commited on
Commit
a2dcba7
·
verified ·
1 Parent(s): 9f7dfeb

Delete custom_pipeline/pipeline.py

Browse files
Files changed (1) hide show
  1. custom_pipeline/pipeline.py +0 -83
custom_pipeline/pipeline.py DELETED
@@ -1,83 +0,0 @@
1
- from diffusers.utils.torch_utils import randn_tensor
2
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
3
-
4
-
5
- class ScoreSdeVePipeline(DiffusionPipeline):
6
- r"""
7
- Pipeline for unconditional image generation.
8
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
9
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
10
- Parameters:
11
- unet ([`UNet2DModel`]):
12
- A `UNet2DModel` to denoise the encoded image.
13
- scheduler ([`ScoreSdeVeScheduler`]):
14
- A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image.
15
- """
16
-
17
- unet
18
- scheduler
19
-
20
- def __init__(self, unet, scheduler):
21
- super().__init__()
22
- self.register_modules(unet=unet, scheduler=scheduler)
23
-
24
- @torch.no_grad()
25
- def __call__(
26
- self,
27
- batch_size: int = 1,
28
- num_inference_steps: int = 2000,
29
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
30
- output_type: Optional[str] = "pil",
31
- return_dict: bool = True,
32
- **kwargs,
33
- ) -> Union[ImagePipelineOutput, Tuple]:
34
- r"""
35
- The call function to the pipeline for generation.
36
- Args:
37
- batch_size (`int`, *optional*, defaults to 1):
38
- The number of images to generate.
39
- generator (`torch.Generator`, `optional`):
40
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
41
- generation deterministic.
42
- output_type (`str`, `optional`, defaults to `"pil"`):
43
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
44
- return_dict (`bool`, *optional*, defaults to `True`):
45
- Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
46
- Returns:
47
- [`~pipelines.ImagePipelineOutput`] or `tuple`:
48
- If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
49
- returned where the first element is a list with the generated images.
50
- """
51
- img_size = self.unet.config.sample_size
52
- shape = (batch_size, 3, img_size, img_size)
53
-
54
- model = self.unet
55
-
56
- sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma
57
- sample = sample.to(self.device)
58
-
59
- self.scheduler.set_timesteps(num_inference_steps)
60
- self.scheduler.set_sigmas(num_inference_steps)
61
-
62
- for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
63
- sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device)
64
-
65
- # correction step
66
- for _ in range(self.scheduler.config.correct_steps):
67
- model_output = self.unet(sample, sigma_t).sample
68
- sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
69
-
70
- # prediction step
71
- model_output = model(sample, sigma_t).sample
72
- output = self.scheduler.step_pred(model_output, t, sample, generator=generator)
73
-
74
- sample, sample_mean = output.prev_sample, output.prev_sample_mean
75
-
76
- sample = sample_mean.clamp(0, 1)
77
- sample = sample.cpu().permute(0, 2, 3, 1).numpy()
78
- if output_type == "pil":
79
- sample = self.numpy_to_pil(sample)
80
-
81
- if not return_dict:
82
- return (sample,)
83
- return ImagePipelineOutput(images=sample)