Update sde_ve_pipeline.py
Browse files- sde_ve_pipeline.py +602 -2
sde_ve_pipeline.py
CHANGED
|
@@ -1,5 +1,605 @@
|
|
| 1 |
-
from
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from diffusers.utils.torch_utils import randn_tensor
|
| 4 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 5 |
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
|
| 10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 11 |
+
from diffusers.utils import BaseOutput
|
| 12 |
+
from diffusers.models.embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
|
| 13 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 14 |
+
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class UNet2DOutput(BaseOutput):
|
| 19 |
+
"""
|
| 20 |
+
The output of [`UNet2DModel`].
|
| 21 |
+
Args:
|
| 22 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 23 |
+
The hidden states output from the last layer of the model.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
sample: torch.FloatTensor
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class UNet2DModel(ModelMixin, ConfigMixin):
|
| 30 |
+
r"""
|
| 31 |
+
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
|
| 32 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 33 |
+
for all models (such as downloading or saving).
|
| 34 |
+
Parameters:
|
| 35 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
| 36 |
+
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
|
| 37 |
+
1)`.
|
| 38 |
+
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
|
| 39 |
+
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
| 40 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 41 |
+
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
|
| 42 |
+
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
|
| 43 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
| 44 |
+
Whether to flip sin to cos for Fourier time embedding.
|
| 45 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
|
| 46 |
+
Tuple of downsample block types.
|
| 47 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
|
| 48 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
|
| 49 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
|
| 50 |
+
Tuple of upsample block types.
|
| 51 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
|
| 52 |
+
Tuple of block output channels.
|
| 53 |
+
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
|
| 54 |
+
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
|
| 55 |
+
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
|
| 56 |
+
downsample_type (`str`, *optional*, defaults to `conv`):
|
| 57 |
+
The downsample type for downsampling layers. Choose between "conv" and "resnet"
|
| 58 |
+
upsample_type (`str`, *optional*, defaults to `conv`):
|
| 59 |
+
The upsample type for upsampling layers. Choose between "conv" and "resnet"
|
| 60 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 61 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 62 |
+
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
|
| 63 |
+
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
|
| 64 |
+
attn_norm_num_groups (`int`, *optional*, defaults to `None`):
|
| 65 |
+
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
|
| 66 |
+
given number of groups. If left as `None`, the group norm layer will only be created if
|
| 67 |
+
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
|
| 68 |
+
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
|
| 69 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
| 70 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
| 71 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 72 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
| 73 |
+
`"timestep"`, or `"identity"`.
|
| 74 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
| 75 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
|
| 76 |
+
conditioning with `class_embed_type` equal to `None`.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
@register_to_config
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
|
| 83 |
+
in_channels: int = 3,
|
| 84 |
+
out_channels: int = 3,
|
| 85 |
+
center_input_sample: bool = False,
|
| 86 |
+
time_embedding_type: str = "positional",
|
| 87 |
+
freq_shift: int = 0,
|
| 88 |
+
flip_sin_to_cos: bool = True,
|
| 89 |
+
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
| 90 |
+
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
| 91 |
+
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
|
| 92 |
+
layers_per_block: int = 2,
|
| 93 |
+
mid_block_scale_factor: float = 1,
|
| 94 |
+
downsample_padding: int = 1,
|
| 95 |
+
downsample_type: str = "conv",
|
| 96 |
+
upsample_type: str = "conv",
|
| 97 |
+
dropout: float = 0.0,
|
| 98 |
+
act_fn: str = "silu",
|
| 99 |
+
attention_head_dim: Optional[int] = 8,
|
| 100 |
+
norm_num_groups: int = 32,
|
| 101 |
+
attn_norm_num_groups: Optional[int] = None,
|
| 102 |
+
norm_eps: float = 1e-5,
|
| 103 |
+
resnet_time_scale_shift: str = "default",
|
| 104 |
+
add_attention: bool = True,
|
| 105 |
+
class_embed_type: Optional[str] = None,
|
| 106 |
+
num_class_embeds: Optional[int] = None,
|
| 107 |
+
num_train_timesteps: Optional[int] = None,
|
| 108 |
+
set_W_to_weight: Optional[bool] = True,
|
| 109 |
+
):
|
| 110 |
+
super().__init__()
|
| 111 |
+
|
| 112 |
+
self.sample_size = sample_size
|
| 113 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 114 |
+
|
| 115 |
+
# Check inputs
|
| 116 |
+
if len(down_block_types) != len(up_block_types):
|
| 117 |
+
raise ValueError(
|
| 118 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
if len(block_out_channels) != len(down_block_types):
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# input
|
| 127 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
| 128 |
+
|
| 129 |
+
# time
|
| 130 |
+
if time_embedding_type == "fourier":
|
| 131 |
+
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16, set_W_to_weight=set_W_to_weight)
|
| 132 |
+
timestep_input_dim = 2 * block_out_channels[0]
|
| 133 |
+
elif time_embedding_type == "positional":
|
| 134 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 135 |
+
timestep_input_dim = block_out_channels[0]
|
| 136 |
+
elif time_embedding_type == "learned":
|
| 137 |
+
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
|
| 138 |
+
timestep_input_dim = block_out_channels[0]
|
| 139 |
+
|
| 140 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 141 |
+
|
| 142 |
+
# class embedding
|
| 143 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 144 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 145 |
+
elif class_embed_type == "timestep":
|
| 146 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 147 |
+
elif class_embed_type == "identity":
|
| 148 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 149 |
+
else:
|
| 150 |
+
self.class_embedding = None
|
| 151 |
+
|
| 152 |
+
self.down_blocks = nn.ModuleList([])
|
| 153 |
+
self.mid_block = None
|
| 154 |
+
self.up_blocks = nn.ModuleList([])
|
| 155 |
+
|
| 156 |
+
# down
|
| 157 |
+
output_channel = block_out_channels[0]
|
| 158 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 159 |
+
input_channel = output_channel
|
| 160 |
+
output_channel = block_out_channels[i]
|
| 161 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 162 |
+
|
| 163 |
+
down_block = get_down_block(
|
| 164 |
+
down_block_type,
|
| 165 |
+
num_layers=layers_per_block,
|
| 166 |
+
in_channels=input_channel,
|
| 167 |
+
out_channels=output_channel,
|
| 168 |
+
temb_channels=time_embed_dim,
|
| 169 |
+
add_downsample=not is_final_block,
|
| 170 |
+
resnet_eps=norm_eps,
|
| 171 |
+
resnet_act_fn=act_fn,
|
| 172 |
+
resnet_groups=norm_num_groups,
|
| 173 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
| 174 |
+
downsample_padding=downsample_padding,
|
| 175 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 176 |
+
downsample_type=downsample_type,
|
| 177 |
+
dropout=dropout,
|
| 178 |
+
)
|
| 179 |
+
self.down_blocks.append(down_block)
|
| 180 |
+
|
| 181 |
+
# mid
|
| 182 |
+
self.mid_block = UNetMidBlock2D(
|
| 183 |
+
in_channels=block_out_channels[-1],
|
| 184 |
+
temb_channels=time_embed_dim,
|
| 185 |
+
dropout=dropout,
|
| 186 |
+
resnet_eps=norm_eps,
|
| 187 |
+
resnet_act_fn=act_fn,
|
| 188 |
+
output_scale_factor=mid_block_scale_factor,
|
| 189 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 190 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
| 191 |
+
resnet_groups=norm_num_groups,
|
| 192 |
+
attn_groups=attn_norm_num_groups,
|
| 193 |
+
add_attention=add_attention,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# up
|
| 197 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 198 |
+
output_channel = reversed_block_out_channels[0]
|
| 199 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 200 |
+
prev_output_channel = output_channel
|
| 201 |
+
output_channel = reversed_block_out_channels[i]
|
| 202 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 203 |
+
|
| 204 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 205 |
+
|
| 206 |
+
up_block = get_up_block(
|
| 207 |
+
up_block_type,
|
| 208 |
+
num_layers=layers_per_block + 1,
|
| 209 |
+
in_channels=input_channel,
|
| 210 |
+
out_channels=output_channel,
|
| 211 |
+
prev_output_channel=prev_output_channel,
|
| 212 |
+
temb_channels=time_embed_dim,
|
| 213 |
+
add_upsample=not is_final_block,
|
| 214 |
+
resnet_eps=norm_eps,
|
| 215 |
+
resnet_act_fn=act_fn,
|
| 216 |
+
resnet_groups=norm_num_groups,
|
| 217 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
| 218 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 219 |
+
upsample_type=upsample_type,
|
| 220 |
+
dropout=dropout,
|
| 221 |
+
)
|
| 222 |
+
self.up_blocks.append(up_block)
|
| 223 |
+
prev_output_channel = output_channel
|
| 224 |
+
|
| 225 |
+
# out
|
| 226 |
+
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
|
| 227 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
|
| 228 |
+
self.conv_act = nn.SiLU()
|
| 229 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
| 230 |
+
|
| 231 |
+
def forward(
|
| 232 |
+
self,
|
| 233 |
+
sample: torch.FloatTensor,
|
| 234 |
+
timestep: Union[torch.Tensor, float, int],
|
| 235 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 236 |
+
return_dict: bool = True,
|
| 237 |
+
) -> Union[UNet2DOutput, Tuple]:
|
| 238 |
+
r"""
|
| 239 |
+
The [`UNet2DModel`] forward method.
|
| 240 |
+
Args:
|
| 241 |
+
sample (`torch.FloatTensor`):
|
| 242 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
| 243 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
| 244 |
+
class_labels (`torch.FloatTensor`, *optional*, defaults to `None`):
|
| 245 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 246 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 247 |
+
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
|
| 248 |
+
Returns:
|
| 249 |
+
[`~models.unet_2d.UNet2DOutput`] or `tuple`:
|
| 250 |
+
If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
|
| 251 |
+
returned where the first element is the sample tensor.
|
| 252 |
+
"""
|
| 253 |
+
# 0. center input if necessary
|
| 254 |
+
if self.config.center_input_sample:
|
| 255 |
+
sample = 2 * sample - 1.0
|
| 256 |
+
|
| 257 |
+
# 1. time
|
| 258 |
+
timesteps = timestep
|
| 259 |
+
if not torch.is_tensor(timesteps):
|
| 260 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
| 261 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
| 262 |
+
timesteps = timesteps[None].to(sample.device)
|
| 263 |
+
|
| 264 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 265 |
+
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
|
| 266 |
+
|
| 267 |
+
t_emb = self.time_proj(timesteps)
|
| 268 |
+
|
| 269 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 270 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 271 |
+
# there might be better ways to encapsulate this.
|
| 272 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 273 |
+
emb = self.time_embedding(t_emb)
|
| 274 |
+
|
| 275 |
+
if self.class_embedding is not None:
|
| 276 |
+
if class_labels is None:
|
| 277 |
+
raise ValueError("class_labels should be provided when doing class conditioning")
|
| 278 |
+
|
| 279 |
+
if self.config.class_embed_type == "timestep":
|
| 280 |
+
class_labels = self.time_proj(class_labels)
|
| 281 |
+
|
| 282 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 283 |
+
emb = emb + class_emb
|
| 284 |
+
elif self.class_embedding is None and class_labels is not None:
|
| 285 |
+
raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
|
| 286 |
+
|
| 287 |
+
# 2. pre-process
|
| 288 |
+
skip_sample = sample
|
| 289 |
+
sample = self.conv_in(sample)
|
| 290 |
+
|
| 291 |
+
# 3. down
|
| 292 |
+
down_block_res_samples = (sample,)
|
| 293 |
+
for downsample_block in self.down_blocks:
|
| 294 |
+
if hasattr(downsample_block, "skip_conv"):
|
| 295 |
+
sample, res_samples, skip_sample = downsample_block(
|
| 296 |
+
hidden_states=sample, temb=emb, skip_sample=skip_sample
|
| 297 |
+
)
|
| 298 |
+
else:
|
| 299 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 300 |
+
|
| 301 |
+
down_block_res_samples += res_samples
|
| 302 |
+
|
| 303 |
+
# 4. mid
|
| 304 |
+
sample = self.mid_block(sample, emb)
|
| 305 |
+
|
| 306 |
+
# 5. up
|
| 307 |
+
skip_sample = None
|
| 308 |
+
for upsample_block in self.up_blocks:
|
| 309 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 310 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 311 |
+
|
| 312 |
+
if hasattr(upsample_block, "skip_conv"):
|
| 313 |
+
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
|
| 314 |
+
else:
|
| 315 |
+
sample = upsample_block(sample, res_samples, emb)
|
| 316 |
+
|
| 317 |
+
# 6. post-process
|
| 318 |
+
sample = self.conv_norm_out(sample)
|
| 319 |
+
sample = self.conv_act(sample)
|
| 320 |
+
sample = self.conv_out(sample)
|
| 321 |
+
|
| 322 |
+
if skip_sample is not None:
|
| 323 |
+
sample += skip_sample
|
| 324 |
+
|
| 325 |
+
if self.config.time_embedding_type == "fourier":
|
| 326 |
+
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
|
| 327 |
+
sample = sample / timesteps
|
| 328 |
+
|
| 329 |
+
if not return_dict:
|
| 330 |
+
return (sample,)
|
| 331 |
+
|
| 332 |
+
return UNet2DOutput(sample=sample)
|
| 333 |
+
|
| 334 |
+
import math
|
| 335 |
+
|
| 336 |
+
from dataclasses import dataclass
|
| 337 |
+
from typing import Optional, Tuple, Union
|
| 338 |
+
import torch
|
| 339 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 340 |
+
from diffusers.utils import BaseOutput
|
| 341 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 342 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
| 343 |
+
|
| 344 |
+
@dataclass
|
| 345 |
+
class SdeVeOutput(BaseOutput):
|
| 346 |
+
"""
|
| 347 |
+
Output class for the scheduler's `step` function output.
|
| 348 |
+
Args:
|
| 349 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 350 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 351 |
+
denoising loop.
|
| 352 |
+
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 353 |
+
Mean averaged `prev_sample` over previous timesteps.
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
prev_sample: torch.FloatTensor
|
| 357 |
+
prev_sample_mean: torch.FloatTensor
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
| 361 |
+
"""
|
| 362 |
+
`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
|
| 363 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 364 |
+
methods the library implements for all schedulers such as loading and saving.
|
| 365 |
+
Args:
|
| 366 |
+
num_train_timesteps (`int`, defaults to 1000):
|
| 367 |
+
The number of diffusion steps to train the model.
|
| 368 |
+
snr (`float`, defaults to 0.15):
|
| 369 |
+
A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
|
| 370 |
+
sigma_min (`float`, defaults to 0.01):
|
| 371 |
+
The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
|
| 372 |
+
the distribution of the data.
|
| 373 |
+
sigma_max (`float`, defaults to 1348.0):
|
| 374 |
+
The maximum value used for the range of continuous timesteps passed into the model.
|
| 375 |
+
sampling_eps (`float`, defaults to 1e-5):
|
| 376 |
+
The end value of sampling where timesteps decrease progressively from 1 to epsilon.
|
| 377 |
+
correct_steps (`int`, defaults to 1):
|
| 378 |
+
The number of correction steps performed on a produced sample.
|
| 379 |
+
"""
|
| 380 |
+
|
| 381 |
+
order = 1
|
| 382 |
+
|
| 383 |
+
@register_to_config
|
| 384 |
+
def __init__(
|
| 385 |
+
self,
|
| 386 |
+
num_train_timesteps: int = 2000,
|
| 387 |
+
snr: float = 0.15,
|
| 388 |
+
sigma_min: float = 0.01,
|
| 389 |
+
sigma_max: float = 1348.0,
|
| 390 |
+
sampling_eps: float = 1e-5,
|
| 391 |
+
correct_steps: int = 1,
|
| 392 |
+
):
|
| 393 |
+
# standard deviation of the initial noise distribution
|
| 394 |
+
self.init_noise_sigma = sigma_max
|
| 395 |
+
|
| 396 |
+
# setable values
|
| 397 |
+
self.timesteps = None
|
| 398 |
+
|
| 399 |
+
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
|
| 400 |
+
|
| 401 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
| 402 |
+
"""
|
| 403 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
| 404 |
+
current timestep.
|
| 405 |
+
Args:
|
| 406 |
+
sample (`torch.FloatTensor`):
|
| 407 |
+
The input sample.
|
| 408 |
+
timestep (`int`, *optional*):
|
| 409 |
+
The current timestep in the diffusion chain.
|
| 410 |
+
Returns:
|
| 411 |
+
`torch.FloatTensor`:
|
| 412 |
+
A scaled input sample.
|
| 413 |
+
"""
|
| 414 |
+
return sample
|
| 415 |
+
|
| 416 |
+
def set_timesteps(
|
| 417 |
+
self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
|
| 418 |
+
):
|
| 419 |
+
"""
|
| 420 |
+
Sets the continuous timesteps used for the diffusion chain (to be run before inference).
|
| 421 |
+
Args:
|
| 422 |
+
num_inference_steps (`int`):
|
| 423 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 424 |
+
sampling_eps (`float`, *optional*):
|
| 425 |
+
The final timestep value (overrides value given during scheduler instantiation).
|
| 426 |
+
device (`str` or `torch.device`, *optional*):
|
| 427 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 428 |
+
"""
|
| 429 |
+
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
|
| 430 |
+
|
| 431 |
+
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
|
| 432 |
+
|
| 433 |
+
def set_sigmas(
|
| 434 |
+
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
|
| 435 |
+
):
|
| 436 |
+
"""
|
| 437 |
+
Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
|
| 438 |
+
of the `drift` and `diffusion` components of the sample update.
|
| 439 |
+
Args:
|
| 440 |
+
num_inference_steps (`int`):
|
| 441 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 442 |
+
sigma_min (`float`, optional):
|
| 443 |
+
The initial noise scale value (overrides value given during scheduler instantiation).
|
| 444 |
+
sigma_max (`float`, optional):
|
| 445 |
+
The final noise scale value (overrides value given during scheduler instantiation).
|
| 446 |
+
sampling_eps (`float`, optional):
|
| 447 |
+
The final timestep value (overrides value given during scheduler instantiation).
|
| 448 |
+
"""
|
| 449 |
+
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
|
| 450 |
+
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
|
| 451 |
+
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
|
| 452 |
+
if self.timesteps is None:
|
| 453 |
+
self.set_timesteps(num_inference_steps, sampling_eps)
|
| 454 |
+
|
| 455 |
+
self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
|
| 456 |
+
self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
|
| 457 |
+
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
|
| 458 |
+
|
| 459 |
+
def get_adjacent_sigma(self, timesteps, t):
|
| 460 |
+
return torch.where(
|
| 461 |
+
timesteps == 0,
|
| 462 |
+
torch.zeros_like(t.to(timesteps.device)),
|
| 463 |
+
self.discrete_sigmas[timesteps - 1].to(timesteps.device),
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
def step_pred(
|
| 467 |
+
self,
|
| 468 |
+
model_output: torch.FloatTensor,
|
| 469 |
+
timestep: int,
|
| 470 |
+
sample: torch.FloatTensor,
|
| 471 |
+
generator: Optional[torch.Generator] = None,
|
| 472 |
+
return_dict: bool = True,
|
| 473 |
+
) -> Union[SdeVeOutput, Tuple]:
|
| 474 |
+
"""
|
| 475 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 476 |
+
process from the learned model outputs (most often the predicted noise).
|
| 477 |
+
Args:
|
| 478 |
+
model_output (`torch.FloatTensor`):
|
| 479 |
+
The direct output from learned diffusion model.
|
| 480 |
+
timestep (`int`):
|
| 481 |
+
The current discrete timestep in the diffusion chain.
|
| 482 |
+
sample (`torch.FloatTensor`):
|
| 483 |
+
A current instance of a sample created by the diffusion process.
|
| 484 |
+
generator (`torch.Generator`, *optional*):
|
| 485 |
+
A random number generator.
|
| 486 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 487 |
+
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
|
| 488 |
+
Returns:
|
| 489 |
+
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
|
| 490 |
+
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
|
| 491 |
+
is returned where the first element is the sample tensor.
|
| 492 |
+
"""
|
| 493 |
+
if self.timesteps is None:
|
| 494 |
+
raise ValueError(
|
| 495 |
+
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
timestep = timestep * torch.ones(
|
| 499 |
+
sample.shape[0], device=sample.device
|
| 500 |
+
) # torch.repeat_interleave(timestep, sample.shape[0])
|
| 501 |
+
timesteps = (timestep * (len(self.timesteps) - 1)).long()
|
| 502 |
+
|
| 503 |
+
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
|
| 504 |
+
timesteps = timesteps.to(self.discrete_sigmas.device)
|
| 505 |
+
|
| 506 |
+
sigma = self.discrete_sigmas[timesteps].to(sample.device)
|
| 507 |
+
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
|
| 508 |
+
drift = torch.zeros_like(sample)
|
| 509 |
+
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
|
| 510 |
+
|
| 511 |
+
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
|
| 512 |
+
# also equation 47 shows the analog from SDE models to ancestral sampling methods
|
| 513 |
+
diffusion = diffusion.flatten()
|
| 514 |
+
while len(diffusion.shape) < len(sample.shape):
|
| 515 |
+
diffusion = diffusion.unsqueeze(-1)
|
| 516 |
+
drift = drift - diffusion**2 * model_output
|
| 517 |
+
|
| 518 |
+
# equation 6: sample noise for the diffusion term of
|
| 519 |
+
noise = randn_tensor(
|
| 520 |
+
sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
|
| 521 |
+
)
|
| 522 |
+
prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
|
| 523 |
+
# TODO is the variable diffusion the correct scaling term for the noise?
|
| 524 |
+
prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
|
| 525 |
+
|
| 526 |
+
if not return_dict:
|
| 527 |
+
return (prev_sample, prev_sample_mean)
|
| 528 |
+
|
| 529 |
+
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
|
| 530 |
+
|
| 531 |
+
def step_correct(
|
| 532 |
+
self,
|
| 533 |
+
model_output: torch.FloatTensor,
|
| 534 |
+
sample: torch.FloatTensor,
|
| 535 |
+
generator: Optional[torch.Generator] = None,
|
| 536 |
+
return_dict: bool = True,
|
| 537 |
+
) -> Union[SchedulerOutput, Tuple]:
|
| 538 |
+
"""
|
| 539 |
+
Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
|
| 540 |
+
making the prediction for the previous timestep.
|
| 541 |
+
Args:
|
| 542 |
+
model_output (`torch.FloatTensor`):
|
| 543 |
+
The direct output from learned diffusion model.
|
| 544 |
+
sample (`torch.FloatTensor`):
|
| 545 |
+
A current instance of a sample created by the diffusion process.
|
| 546 |
+
generator (`torch.Generator`, *optional*):
|
| 547 |
+
A random number generator.
|
| 548 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 549 |
+
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
|
| 550 |
+
Returns:
|
| 551 |
+
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
|
| 552 |
+
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
|
| 553 |
+
is returned where the first element is the sample tensor.
|
| 554 |
+
"""
|
| 555 |
+
if self.timesteps is None:
|
| 556 |
+
raise ValueError(
|
| 557 |
+
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
|
| 561 |
+
# sample noise for correction
|
| 562 |
+
noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)
|
| 563 |
+
|
| 564 |
+
# compute step size from the model_output, the noise, and the snr
|
| 565 |
+
grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
|
| 566 |
+
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
|
| 567 |
+
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
|
| 568 |
+
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
|
| 569 |
+
# self.repeat_scalar(step_size, sample.shape[0])
|
| 570 |
+
|
| 571 |
+
# compute corrected sample: model_output term and noise term
|
| 572 |
+
step_size = step_size.flatten()
|
| 573 |
+
while len(step_size.shape) < len(sample.shape):
|
| 574 |
+
step_size = step_size.unsqueeze(-1)
|
| 575 |
+
prev_sample_mean = sample + step_size * model_output
|
| 576 |
+
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
|
| 577 |
+
|
| 578 |
+
if not return_dict:
|
| 579 |
+
return (prev_sample,)
|
| 580 |
+
|
| 581 |
+
return SchedulerOutput(prev_sample=prev_sample)
|
| 582 |
+
|
| 583 |
+
def add_noise(
|
| 584 |
+
self,
|
| 585 |
+
original_samples: torch.FloatTensor,
|
| 586 |
+
noise: torch.FloatTensor,
|
| 587 |
+
timesteps: torch.FloatTensor,
|
| 588 |
+
) -> torch.FloatTensor:
|
| 589 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
| 590 |
+
timesteps = timesteps.to(original_samples.device)
|
| 591 |
+
sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
|
| 592 |
+
noise = (
|
| 593 |
+
noise * sigmas[:, None, None, None]
|
| 594 |
+
if noise is not None
|
| 595 |
+
else torch.randn_like(original_samples) * sigmas[:, None, None, None]
|
| 596 |
+
)
|
| 597 |
+
noisy_samples = noise + original_samples
|
| 598 |
+
return noisy_samples
|
| 599 |
+
|
| 600 |
+
def __len__(self):
|
| 601 |
+
return self.config.num_train_timesteps
|
| 602 |
+
|
| 603 |
from diffusers.utils.torch_utils import randn_tensor
|
| 604 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 605 |
|