|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.models.embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block |
|
|
|
|
|
@dataclass |
|
class UNet2DOutput(BaseOutput): |
|
""" |
|
The output of [`UNet2DModel`]. |
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
The hidden states output from the last layer of the model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class UNet2DModel(ModelMixin, ConfigMixin): |
|
r""" |
|
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output. |
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) - |
|
1)`. |
|
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output. |
|
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. |
|
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use. |
|
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `True`): |
|
Whether to flip sin to cos for Fourier time embedding. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): |
|
Tuple of downsample block types. |
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`): |
|
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): |
|
Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`): |
|
Tuple of block output channels. |
|
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block. |
|
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block. |
|
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution. |
|
downsample_type (`str`, *optional*, defaults to `conv`): |
|
The downsample type for downsampling layers. Choose between "conv" and "resnet" |
|
upsample_type (`str`, *optional*, defaults to `conv`): |
|
The upsample type for upsampling layers. Choose between "conv" and "resnet" |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension. |
|
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization. |
|
attn_norm_num_groups (`int`, *optional*, defaults to `None`): |
|
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the |
|
given number of groups. If left as `None`, the group norm layer will only be created if |
|
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups. |
|
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization. |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config |
|
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. |
|
class_embed_type (`str`, *optional*, defaults to `None`): |
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, |
|
`"timestep"`, or `"identity"`. |
|
num_class_embeds (`int`, *optional*, defaults to `None`): |
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class |
|
conditioning with `class_embed_type` equal to `None`. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[Union[int, Tuple[int, int]]] = None, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
center_input_sample: bool = False, |
|
time_embedding_type: str = "positional", |
|
freq_shift: int = 0, |
|
flip_sin_to_cos: bool = True, |
|
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), |
|
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"), |
|
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896), |
|
layers_per_block: int = 2, |
|
mid_block_scale_factor: float = 1, |
|
downsample_padding: int = 1, |
|
downsample_type: str = "conv", |
|
upsample_type: str = "conv", |
|
dropout: float = 0.0, |
|
act_fn: str = "silu", |
|
attention_head_dim: Optional[int] = 8, |
|
norm_num_groups: int = 32, |
|
attn_norm_num_groups: Optional[int] = None, |
|
norm_eps: float = 1e-5, |
|
resnet_time_scale_shift: str = "default", |
|
add_attention: bool = True, |
|
class_embed_type: Optional[str] = None, |
|
num_class_embeds: Optional[int] = None, |
|
num_train_timesteps: Optional[int] = None, |
|
set_W_to_weight: Optional[bool] = True, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) |
|
|
|
|
|
if time_embedding_type == "fourier": |
|
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16, set_W_to_weight=set_W_to_weight) |
|
timestep_input_dim = 2 * block_out_channels[0] |
|
elif time_embedding_type == "positional": |
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) |
|
timestep_input_dim = block_out_channels[0] |
|
elif time_embedding_type == "learned": |
|
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0]) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
|
|
|
|
if class_embed_type is None and num_class_embeds is not None: |
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) |
|
elif class_embed_type == "timestep": |
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
elif class_embed_type == "identity": |
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) |
|
else: |
|
self.class_embedding = None |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
downsample_type=downsample_type, |
|
dropout=dropout, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=time_embed_dim, |
|
dropout=dropout, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
attn_groups=attn_norm_num_groups, |
|
add_attention=add_attention, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=layers_per_block + 1, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=time_embed_dim, |
|
add_upsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
upsample_type=upsample_type, |
|
dropout=dropout, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
class_labels: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DOutput, Tuple]: |
|
r""" |
|
The [`UNet2DModel`] forward method. |
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch, channel, height, width)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
class_labels (`torch.FloatTensor`, *optional*, defaults to `None`): |
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple. |
|
Returns: |
|
[`~models.unet_2d.UNet2DOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is the sample tensor. |
|
""" |
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) |
|
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
emb = self.time_embedding(t_emb) |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when doing class conditioning") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
emb = emb + class_emb |
|
elif self.class_embedding is None and class_labels is not None: |
|
raise ValueError("class_embedding needs to be initialized in order to use class conditioning") |
|
|
|
|
|
skip_sample = sample |
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "skip_conv"): |
|
sample, res_samples, skip_sample = downsample_block( |
|
hidden_states=sample, temb=emb, skip_sample=skip_sample |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
skip_sample = None |
|
for upsample_block in self.up_blocks: |
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
if hasattr(upsample_block, "skip_conv"): |
|
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample) |
|
else: |
|
sample = upsample_block(sample, res_samples, emb) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if skip_sample is not None: |
|
sample += skip_sample |
|
|
|
if self.config.time_embedding_type == "fourier": |
|
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:])))) |
|
sample = sample / timesteps |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DOutput(sample=sample) |
|
|
|
import math |
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
@dataclass |
|
class SdeVeOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Mean averaged `prev_sample` over previous timesteps. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
prev_sample_mean: torch.FloatTensor |
|
|
|
|
|
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler. |
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
snr (`float`, defaults to 0.15): |
|
A coefficient weighting the step from the `model_output` sample (from the network) to the random noise. |
|
sigma_min (`float`, defaults to 0.01): |
|
The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror |
|
the distribution of the data. |
|
sigma_max (`float`, defaults to 1348.0): |
|
The maximum value used for the range of continuous timesteps passed into the model. |
|
sampling_eps (`float`, defaults to 1e-5): |
|
The end value of sampling where timesteps decrease progressively from 1 to epsilon. |
|
correct_steps (`int`, defaults to 1): |
|
The number of correction steps performed on a produced sample. |
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 2000, |
|
snr: float = 0.15, |
|
sigma_min: float = 0.01, |
|
sigma_max: float = 1348.0, |
|
sampling_eps: float = 1e-5, |
|
correct_steps: int = 1, |
|
): |
|
|
|
self.init_noise_sigma = sigma_max |
|
|
|
|
|
self.timesteps = None |
|
|
|
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def set_timesteps( |
|
self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None |
|
): |
|
""" |
|
Sets the continuous timesteps used for the diffusion chain (to be run before inference). |
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
sampling_eps (`float`, *optional*): |
|
The final timestep value (overrides value given during scheduler instantiation). |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
|
|
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device) |
|
|
|
def set_sigmas( |
|
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None |
|
): |
|
""" |
|
Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight |
|
of the `drift` and `diffusion` components of the sample update. |
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
sigma_min (`float`, optional): |
|
The initial noise scale value (overrides value given during scheduler instantiation). |
|
sigma_max (`float`, optional): |
|
The final noise scale value (overrides value given during scheduler instantiation). |
|
sampling_eps (`float`, optional): |
|
The final timestep value (overrides value given during scheduler instantiation). |
|
""" |
|
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min |
|
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
if self.timesteps is None: |
|
self.set_timesteps(num_inference_steps, sampling_eps) |
|
|
|
self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) |
|
self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps)) |
|
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) |
|
|
|
def get_adjacent_sigma(self, timesteps, t): |
|
return torch.where( |
|
timesteps == 0, |
|
torch.zeros_like(t.to(timesteps.device)), |
|
self.discrete_sigmas[timesteps - 1].to(timesteps.device), |
|
) |
|
|
|
def step_pred( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[SdeVeOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple |
|
is returned where the first element is the sample tensor. |
|
""" |
|
if self.timesteps is None: |
|
raise ValueError( |
|
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
timestep = timestep * torch.ones( |
|
sample.shape[0], device=sample.device |
|
) |
|
timesteps = (timestep * (len(self.timesteps) - 1)).long() |
|
|
|
|
|
timesteps = timesteps.to(self.discrete_sigmas.device) |
|
|
|
sigma = self.discrete_sigmas[timesteps].to(sample.device) |
|
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) |
|
drift = torch.zeros_like(sample) |
|
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 |
|
|
|
|
|
|
|
diffusion = diffusion.flatten() |
|
while len(diffusion.shape) < len(sample.shape): |
|
diffusion = diffusion.unsqueeze(-1) |
|
drift = drift - diffusion**2 * model_output |
|
|
|
|
|
noise = randn_tensor( |
|
sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype |
|
) |
|
prev_sample_mean = sample - drift |
|
|
|
prev_sample = prev_sample_mean + diffusion * noise |
|
|
|
if not return_dict: |
|
return (prev_sample, prev_sample_mean) |
|
|
|
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) |
|
|
|
def step_correct( |
|
self, |
|
model_output: torch.FloatTensor, |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after |
|
making the prediction for the previous timestep. |
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple |
|
is returned where the first element is the sample tensor. |
|
""" |
|
if self.timesteps is None: |
|
raise ValueError( |
|
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device) |
|
|
|
|
|
grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() |
|
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() |
|
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 |
|
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) |
|
|
|
|
|
|
|
step_size = step_size.flatten() |
|
while len(step_size.shape) < len(sample.shape): |
|
step_size = step_size.unsqueeze(-1) |
|
prev_sample_mean = sample + step_size * model_output |
|
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
timesteps = timesteps.to(original_samples.device) |
|
sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps |
|
noise = ( |
|
noise * sigmas[:, None, None, None] |
|
if noise is not None |
|
else torch.randn_like(original_samples) * sigmas[:, None, None, None] |
|
) |
|
noisy_samples = noise + original_samples |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
class ScoreSdeVePipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for unconditional image generation. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
Parameters: |
|
unet ([`UNet2DModel`]): |
|
A `UNet2DModel` to denoise the encoded image. |
|
scheduler ([`ScoreSdeVeScheduler`]): |
|
A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image. |
|
""" |
|
|
|
unet: UNet2DModel |
|
scheduler: ScoreSdeVeScheduler |
|
|
|
def __init__(self, unet, scheduler): |
|
super().__init__() |
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
batch_size: int = 1, |
|
num_inference_steps: int = 2000, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
r""" |
|
The call function to the pipeline for generation. |
|
Args: |
|
batch_size (`int`, *optional*, defaults to 1): |
|
The number of images to generate. |
|
generator (`torch.Generator`, `optional`): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
output_type (`str`, `optional`, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. |
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
img_size = self.unet.config.sample_size |
|
shape = (batch_size, 3, img_size, img_size) |
|
|
|
model = self.unet |
|
|
|
sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma |
|
sample = sample.to(self.device) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
self.scheduler.set_sigmas(num_inference_steps) |
|
|
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): |
|
sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device) |
|
|
|
|
|
for _ in range(self.scheduler.config.correct_steps): |
|
model_output = self.unet(sample, sigma_t).sample |
|
sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample |
|
|
|
|
|
model_output = model(sample, sigma_t).sample |
|
output = self.scheduler.step_pred(model_output, t, sample, generator=generator) |
|
|
|
sample, sample_mean = output.prev_sample, output.prev_sample_mean |
|
|
|
sample = sample_mean.clamp(0, 1) |
|
sample = sample.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
sample = self.numpy_to_pil(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
return ImagePipelineOutput(images=sample) |