File size: 32,594 Bytes
9f7dfeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc10d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd7ef7
 
bc10d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
from typing import List, Optional, Tuple, Union

import torch
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.models.embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block


@dataclass
class UNet2DOutput(BaseOutput):
    """
    The output of [`UNet2DModel`].
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            The hidden states output from the last layer of the model.
    """

    sample: torch.FloatTensor


class UNet2DModel(ModelMixin, ConfigMixin):
    r"""
    A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
            1)`.
        in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
        freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip sin to cos for Fourier time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
            Tuple of downsample block types.
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
            Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
            Tuple of block output channels.
        layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
        mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
        downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
        downsample_type (`str`, *optional*, defaults to `conv`):
            The downsample type for downsampling layers. Choose between "conv" and "resnet"
        upsample_type (`str`, *optional*, defaults to `conv`):
            The upsample type for upsampling layers. Choose between "conv" and "resnet"
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
        norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
        attn_norm_num_groups (`int`, *optional*, defaults to `None`):
            If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
            given number of groups. If left as `None`, the group norm layer will only be created if
            `resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
        norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
            `"timestep"`, or `"identity"`.
        num_class_embeds (`int`, *optional*, defaults to `None`):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
            conditioning with `class_embed_type` equal to `None`.
    """

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[Union[int, Tuple[int, int]]] = None,
        in_channels: int = 3,
        out_channels: int = 3,
        center_input_sample: bool = False,
        time_embedding_type: str = "positional",
        freq_shift: int = 0,
        flip_sin_to_cos: bool = True,
        down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
        up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
        block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
        layers_per_block: int = 2,
        mid_block_scale_factor: float = 1,
        downsample_padding: int = 1,
        downsample_type: str = "conv",
        upsample_type: str = "conv",
        dropout: float = 0.0,
        act_fn: str = "silu",
        attention_head_dim: Optional[int] = 8,
        norm_num_groups: int = 32,
        attn_norm_num_groups: Optional[int] = None,
        norm_eps: float = 1e-5,
        resnet_time_scale_shift: str = "default",
        add_attention: bool = True,
        class_embed_type: Optional[str] = None,
        num_class_embeds: Optional[int] = None,
        num_train_timesteps: Optional[int] = None,
        set_W_to_weight: Optional[bool] = True,
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        if time_embedding_type == "fourier":
            self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16, set_W_to_weight=set_W_to_weight)
            timestep_input_dim = 2 * block_out_channels[0]
        elif time_embedding_type == "positional":
            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        elif time_embedding_type == "learned":
            self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
            timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        # class embedding
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        else:
            self.class_embedding = None

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
                downsample_padding=downsample_padding,
                resnet_time_scale_shift=resnet_time_scale_shift,
                downsample_type=downsample_type,
                dropout=dropout,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            dropout=dropout,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
            resnet_groups=norm_num_groups,
            attn_groups=attn_norm_num_groups,
            add_attention=add_attention,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
                resnet_time_scale_shift=resnet_time_scale_shift,
                upsample_type=upsample_type,
                dropout=dropout,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        class_labels: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[UNet2DOutput, Tuple]:
        r"""
        The [`UNet2DModel`] forward method.
        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            class_labels (`torch.FloatTensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
        Returns:
            [`~models.unet_2d.UNet2DOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
                returned where the first element is the sample tensor.
        """
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when doing class conditioning")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb
        elif self.class_embedding is None and class_labels is not None:
            raise ValueError("class_embedding needs to be initialized in order to use class conditioning")

        # 2. pre-process
        skip_sample = sample
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "skip_conv"):
                sample, res_samples, skip_sample = downsample_block(
                    hidden_states=sample, temb=emb, skip_sample=skip_sample
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, emb)

        # 5. up
        skip_sample = None
        for upsample_block in self.up_blocks:
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            if hasattr(upsample_block, "skip_conv"):
                sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
            else:
                sample = upsample_block(sample, res_samples, emb)

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if skip_sample is not None:
            sample += skip_sample

        if self.config.time_embedding_type == "fourier":
            timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
            sample = sample / timesteps

        if not return_dict:
            return (sample,)

        return UNet2DOutput(sample=sample)

import math

from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput

@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.
    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample` over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor


class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
    """
    `ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        snr (`float`, defaults to 0.15):
            A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
        sigma_min (`float`, defaults to 0.01):
            The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
            the distribution of the data.
        sigma_max (`float`, defaults to 1348.0):
            The maximum value used for the range of continuous timesteps passed into the model.
        sampling_eps (`float`, defaults to 1e-5):
            The end value of sampling where timesteps decrease progressively from 1 to epsilon.
        correct_steps (`int`, defaults to 1):
            The number of correction steps performed on a produced sample.
    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
    ):
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

        # setable values
        self.timesteps = None

        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)

    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        return sample

    def set_timesteps(
        self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
    ):
        """
        Sets the continuous timesteps used for the diffusion chain (to be run before inference).
        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            sampling_eps (`float`, *optional*):
                The final timestep value (overrides value given during scheduler instantiation).
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps

        self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)

    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
        """
        Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
        of the `drift` and `diffusion` components of the sample update.
        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                The initial noise scale value (overrides value given during scheduler instantiation).
            sigma_max (`float`, optional):
                The final noise scale value (overrides value given during scheduler instantiation).
            sampling_eps (`float`, optional):
                The final timestep value (overrides value given during scheduler instantiation).
        """
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
        if self.timesteps is None:
            self.set_timesteps(num_inference_steps, sampling_eps)

        self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
        self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
        self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])

    def get_adjacent_sigma(self, timesteps, t):
        return torch.where(
            timesteps == 0,
            torch.zeros_like(t.to(timesteps.device)),
            self.discrete_sigmas[timesteps - 1].to(timesteps.device),
        )

    def step_pred(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[SdeVeOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).
        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
        Returns:
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
                is returned where the first element is the sample tensor.
        """
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()

        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

        sigma = self.discrete_sigmas[timesteps].to(sample.device)
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
        drift = torch.zeros_like(sample)
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
        diffusion = diffusion.flatten()
        while len(diffusion.shape) < len(sample.shape):
            diffusion = diffusion.unsqueeze(-1)
        drift = drift - diffusion**2 * model_output

        #  equation 6: sample noise for the diffusion term of
        noise = randn_tensor(
            sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
        )
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
        # TODO is the variable diffusion the correct scaling term for the noise?
        prev_sample = prev_sample_mean + diffusion * noise  # add impact of diffusion field g

        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)

    def step_correct(
        self,
        model_output: torch.FloatTensor,
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
        making the prediction for the previous timestep.
        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
        Returns:
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
                is returned where the first element is the sample tensor.
        """
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
        noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)

        # compute step size from the model_output, the noise, and the snr
        grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
        noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])

        # compute corrected sample: model_output term and noise term
        step_size = step_size.flatten()
        while len(step_size.shape) < len(sample.shape):
            step_size = step_size.unsqueeze(-1)
        prev_sample_mean = sample + step_size * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        timesteps = timesteps.to(original_samples.device)
        sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
        noise = (
            noise * sigmas[:, None, None, None]
            if noise is not None
            else torch.randn_like(original_samples) * sigmas[:, None, None, None]
        )
        noisy_samples = noise + original_samples
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps

from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput


class ScoreSdeVePipeline(DiffusionPipeline):
    r"""
    Pipeline for unconditional image generation.
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
    Parameters:
        unet ([`UNet2DModel`]):
            A `UNet2DModel` to denoise the encoded image.
        scheduler ([`ScoreSdeVeScheduler`]):
            A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image.
    """

    unet: UNet2DModel
    scheduler: ScoreSdeVeScheduler

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 1,
        num_inference_steps: int = 2000,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
        The call function to the pipeline for generation.
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                The number of images to generate.
            generator (`torch.Generator`, `optional`):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            output_type (`str`, `optional`, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
        """
        img_size = self.unet.config.sample_size
        shape = (batch_size, 3, img_size, img_size)

        model = self.unet

        sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma
        sample = sample.to(self.device)

        self.scheduler.set_timesteps(num_inference_steps)
        self.scheduler.set_sigmas(num_inference_steps)

        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
            sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device)

            # correction step
            for _ in range(self.scheduler.config.correct_steps):
                model_output = self.unet(sample, sigma_t).sample
                sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample

            # prediction step
            model_output = model(sample, sigma_t).sample
            output = self.scheduler.step_pred(model_output, t, sample, generator=generator)

            sample, sample_mean = output.prev_sample, output.prev_sample_mean

        sample = sample_mean.clamp(0, 1)
        sample = sample.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            sample = self.numpy_to_pil(sample)

        if not return_dict:
            return (sample,)
        return ImagePipelineOutput(images=sample)