Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: facebook/opt-350m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 9b3a5919e996b43f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9b3a5919e996b43f_train_data.json
  type:
    field_input: thinking
    field_instruction: prompt
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/bab80e07-cf92-4525-abe6-bf0d64212509
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/9b3a5919e996b43f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: ef00d239-571d-44fb-ae4b-a020df7f09b1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ef00d239-571d-44fb-ae4b-a020df7f09b1
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

bab80e07-cf92-4525-abe6-bf0d64212509

This model is a fine-tuned version of facebook/opt-350m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 1.7855
5.1691 0.0537 100 1.2518
4.7876 0.1075 200 1.1656
4.3157 0.1612 300 1.0780
4.2875 0.2150 400 1.0325
4.4765 0.2687 500 0.9903
4.1246 0.3225 600 0.9688
3.8197 0.3762 700 0.9726
3.8941 0.4300 800 0.9635
4.1191 0.4837 900 0.9212
3.6611 0.5375 1000 0.9328
3.5027 0.5912 1100 0.8896
3.4397 0.6450 1200 0.9109
3.5156 0.6987 1300 0.8761
3.7601 0.7525 1400 0.8751
3.4886 0.8062 1500 0.8606
3.1389 0.8600 1600 0.8488
3.2549 0.9137 1700 0.8776
3.4852 0.9675 1800 0.8418
3.3517 1.0212 1900 0.8019
3.1547 1.0750 2000 0.8292
3.1288 1.1287 2100 0.7916
2.9624 1.1825 2200 0.8047
3.1523 1.2362 2300 0.7841
3.01 1.2900 2400 0.7736
3.2158 1.3437 2500 0.7726
3.0904 1.3975 2600 0.7758
2.9655 1.4512 2700 0.7682
3.1154 1.5050 2800 0.7612
3.199 1.5587 2900 0.7508
3.1015 1.6125 3000 0.7463
2.9626 1.6662 3100 0.7425
3.0086 1.7200 3200 0.7358
2.9609 1.7737 3300 0.7343
2.7884 1.8275 3400 0.7286
2.9546 1.8812 3500 0.7227
2.8298 1.9350 3600 0.7203
2.8598 1.9887 3700 0.7133
2.5154 2.0425 3800 0.7121
2.6962 2.0962 3900 0.7085
2.7309 2.1500 4000 0.7024
2.6869 2.2037 4100 0.7035
2.7636 2.2575 4200 0.6971
2.7232 2.3112 4300 0.6901
2.8095 2.3650 4400 0.6923
2.725 2.4187 4500 0.6882
2.793 2.4725 4600 0.6892
2.6342 2.5262 4700 0.6852
2.8126 2.5800 4800 0.6832
2.4884 2.6337 4900 0.6812
2.6875 2.6874 5000 0.6800
2.7025 2.7412 5100 0.6811
2.6606 2.7949 5200 0.6808
2.5986 2.8487 5300 0.6809

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/bab80e07-cf92-4525-abe6-bf0d64212509

Base model

facebook/opt-350m
Adapter
(297)
this model