Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: facebook/opt-125m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 47b36a24df61e9c5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/47b36a24df61e9c5_train_data.json
  type:
    field_input: documents
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/5f0159c4-1008-4527-9092-4ee6e6b9e663
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 1
mlflow_experiment_name: /tmp/47b36a24df61e9c5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: a6924886-18eb-47b1-8a4b-24becc99648c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a6924886-18eb-47b1-8a4b-24becc99648c
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

5f0159c4-1008-4527-9092-4ee6e6b9e663

This model is a fine-tuned version of facebook/opt-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
47.7848 0.0004 1 3.0276
34.159 0.0202 50 2.9019
39.2367 0.0405 100 2.5922
52.0151 0.0607 150 2.5356
33.4878 0.0809 200 2.5099
25.6957 0.1012 250 2.4814
27.5454 0.1214 300 2.4519
32.6855 0.1417 350 2.4207
25.3411 0.1619 400 2.4211
27.4427 0.1821 450 2.4128
34.6101 0.2024 500 2.3944
23.8259 0.2226 550 2.3888
23.7378 0.2428 600 2.3808
27.431 0.2631 650 2.3735
26.069 0.2833 700 2.3755
20.5981 0.3035 750 2.3722
23.1821 0.3238 800 2.3646
20.5374 0.3440 850 2.3509
22.8665 0.3642 900 2.3556
21.9577 0.3845 950 2.3418
20.0986 0.4047 1000 2.3399
29.616 0.4250 1050 2.3433
25.8536 0.4452 1100 2.3335
18.732 0.4654 1150 2.3298
21.2083 0.4857 1200 2.3250
20.2594 0.5059 1250 2.3195
14.3002 0.5261 1300 2.3196
24.714 0.5464 1350 2.3132
22.0257 0.5666 1400 2.3093
16.7176 0.5868 1450 2.3012
15.5525 0.6071 1500 2.3052
20.5451 0.6273 1550 2.2970
31.716 0.6475 1600 2.2905
23.2587 0.6678 1650 2.2938
16.72 0.6880 1700 2.2914
19.7095 0.7083 1750 2.2868
25.7639 0.7285 1800 2.2802
30.8813 0.7487 1850 2.2860
25.8737 0.7690 1900 2.2825
21.8546 0.7892 1950 2.2857

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/5f0159c4-1008-4527-9092-4ee6e6b9e663

Base model

facebook/opt-125m
Adapter
(383)
this model