My first model for RL using env:LunarLander-v2
Browse files- EC_LunarLander-v2.zip +2 -2
- EC_LunarLander-v2/data +11 -11
- EC_LunarLander-v2/policy.optimizer.pth +2 -2
- EC_LunarLander-v2/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
EC_LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52a5b62a3c6f8936c419b27727ef9ddc6c257cfa9c2b390f4816d8a7e12daaaf
|
3 |
+
size 147035
|
EC_LunarLander-v2/data
CHANGED
@@ -42,13 +42,13 @@
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
-
"n_envs":
|
46 |
-
"num_timesteps":
|
47 |
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,30 +57,30 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 8,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677323685890363825,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAA1B3j3IPFY/8iebPRxzyL7YcfE9fEEFPAAAAAAAAAAAGnIKPYWxMj+YPkQ9D/Wfvsl2Qrw+Rms8AAAAAAAAAAAASEa9F/YmPp4NDT600Jq+ZZMvPVRIsLwAAAAAAAAAAGb9Ej5q0xI+JCaevk7BJL7HFn299NMmvQAAAAAAAAAAmgpXPStUnT1uQfK9CzMdvvGJjLyFNwW9AAAAAAAAAABmFnU9yRLUPq3/p71C/aK+gl10u7X8tL0AAAAAAAAAAFrP6z1uJwM/CHqSOgd8tr5sCxM9mky+vAAAAAAAAAAAIOUvPtcSWj+WWko9cVrNvi7QQj57RhG+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfPMbJlo4ckCUhpRSlIwBbJRNDAGMAXSUR0CV9FQFLWZrdX2UKGgGaAloD0MI1GUxsfnIbUCUhpRSlGgVS/hoFkdAlfSBVIZqEnV9lChoBmgJaA9DCHrIlA8BfHBAlIaUUpRoFUviaBZHQJX2hjriVB51fZQoaAZoCWgPQwh7EW3HFBNzQJSGlFKUaBVNOAFoFkdAlfeTHsC1Z3V9lChoBmgJaA9DCEikbfxJ/XFAlIaUUpRoFU03AWgWR0CV99jlxOtXdX2UKGgGaAloD0MI8djPYik0ckCUhpRSlGgVS/hoFkdAlfnycLBsRHV9lChoBmgJaA9DCJG1hlK7jHBAlIaUUpRoFU0MAWgWR0CV+lPbfxc3dX2UKGgGaAloD0MIQZ5dvjVFckCUhpRSlGgVTQABaBZHQJX7YvAXVLB1fZQoaAZoCWgPQwhlVYSbTGRxQJSGlFKUaBVNYQFoFkdAlf2I20iQk3V9lChoBmgJaA9DCOc1domq1HJAlIaUUpRoFU0bAWgWR0CV/cW4EwFldX2UKGgGaAloD0MIQ5CDEqYDcUCUhpRSlGgVTRABaBZHQJX+YsasIVx1fZQoaAZoCWgPQwiKraBpiRBnQJSGlFKUaBVNRwNoFkdAlf6EqDsdDXV9lChoBmgJaA9DCEht4uR+I29AlIaUUpRoFU0GAWgWR0CV/4VaOgg6dX2UKGgGaAloD0MIHJdxUwPTc0CUhpRSlGgVTQABaBZHQJX/pCswL3N1fZQoaAZoCWgPQwioGVJF8QlSQJSGlFKUaBVL1WgWR0CWAQOh0yP/dX2UKGgGaAloD0MIlumXiDdkckCUhpRSlGgVTdYBaBZHQJYBcUO/cnF1fZQoaAZoCWgPQwhybhPuFVxvQJSGlFKUaBVNRwFoFkdAlgF8bNr0rnV9lChoBmgJaA9DCF7ZBYMrPXBAlIaUUpRoFUv4aBZHQJYB0uscQy11fZQoaAZoCWgPQwib4nFR7SBwQJSGlFKUaBVL8mgWR0CWAj4mTkhidX2UKGgGaAloD0MIStBf6BFZb0CUhpRSlGgVTRkBaBZHQJYC7opx3mp1fZQoaAZoCWgPQwjWx0Pf3bpyQJSGlFKUaBVNKAFoFkdAlgRAzDXOGHV9lChoBmgJaA9DCOG3IcZr2G5AlIaUUpRoFU08AWgWR0CWBHo5PuXvdX2UKGgGaAloD0MItCJqos9ub0CUhpRSlGgVS+FoFkdAlgSKwD/2kHV9lChoBmgJaA9DCPqZet3iv3FAlIaUUpRoFU0BAWgWR0CWBUxjJ+2FdX2UKGgGaAloD0MIa7qe6LrINsCUhpRSlGgVS6BoFkdAlgVcFQl8gXV9lChoBmgJaA9DCOYHrvIEQnFAlIaUUpRoFU0xAWgWR0CWBgo73fygdX2UKGgGaAloD0MIu3uA7gthckCUhpRSlGgVTSUBaBZHQJYGqa1Cw8p1fZQoaAZoCWgPQwiNRdPZiaxwQJSGlFKUaBVNUwFoFkdAlgbsOG0u2HV9lChoBmgJaA9DCL4W9N4YxEZAlIaUUpRoFUvGaBZHQJYHMKrq+rV1fZQoaAZoCWgPQwg9uaZA5tRwQJSGlFKUaBVNAgFoFkdAlghUDU3GXHV9lChoBmgJaA9DCC1A22qWF3BAlIaUUpRoFU0+AWgWR0CWCWPyCnP3dX2UKGgGaAloD0MInb6er1kzb0CUhpRSlGgVTSoBaBZHQJYKRPHktEp1fZQoaAZoCWgPQwiwARHiClhwQJSGlFKUaBVNMQFoFkdAlgpVh5PdmHV9lChoBmgJaA9DCEvoLomzQ25AlIaUUpRoFUv6aBZHQJYLmePJaJR1fZQoaAZoCWgPQwjIQJ5dvp9xQJSGlFKUaBVNEQFoFkdAlguiMglniHV9lChoBmgJaA9DCB2OrtLdY3NAlIaUUpRoFU1iAWgWR0CWDAjCpFTedX2UKGgGaAloD0MIxooaTEMmc0CUhpRSlGgVTXYBaBZHQJYM/V09yLh1fZQoaAZoCWgPQwi4sdmR6uJxQJSGlFKUaBVNEgFoFkdAlg03jIaLoHV9lChoBmgJaA9DCErx8QlZ6XFAlIaUUpRoFU0PAWgWR0CWDguoxYaHdX2UKGgGaAloD0MIaLEUyVe+cUCUhpRSlGgVTRUBaBZHQJYO3R6Ww/x1fZQoaAZoCWgPQwjSqwFKwypxQJSGlFKUaBVNFgFoFkdAlg7vLLZBcHV9lChoBmgJaA9DCL8s7dTc7W5AlIaUUpRoFUv4aBZHQJYPjoKUmlZ1fZQoaAZoCWgPQwjhRsoWifNxQJSGlFKUaBVNIgFoFkdAlil63I+4b3V9lChoBmgJaA9DCCzUmubd43JAlIaUUpRoFUv/aBZHQJYqorhBJI11fZQoaAZoCWgPQwjerMH76v9wQJSGlFKUaBVNPgFoFkdAliq28VYZEXV9lChoBmgJaA9DCAu45/nTEXJAlIaUUpRoFU0GAWgWR0CWLGSh8IAwdX2UKGgGaAloD0MI1nPS+4ZAckCUhpRSlGgVTTwBaBZHQJYsbLV4HHF1fZQoaAZoCWgPQwhGQIUjyJJyQJSGlFKUaBVNGQFoFkdAli3ekcjqwHV9lChoBmgJaA9DCA5lqIppDHNAlIaUUpRoFU04AWgWR0CWLr5NXYDldX2UKGgGaAloD0MIJNHLKBavcECUhpRSlGgVS+doFkdAli7iQo1DSnV9lChoBmgJaA9DCEBoPXzZb3NAlIaUUpRoFU0+AWgWR0CWL/jAzpHJdX2UKGgGaAloD0MIB5eOOU/mbkCUhpRSlGgVTTIBaBZHQJYx/iMo+fR1fZQoaAZoCWgPQwj9FMeB1zhvQJSGlFKUaBVNBAFoFkdAljKzJU5uInV9lChoBmgJaA9DCJWbqKX5+nFAlIaUUpRoFU0UAWgWR0CWMwzru6VddX2UKGgGaAloD0MIcO8a9KW+cUCUhpRSlGgVTVsBaBZHQJYzDoUzsQd1fZQoaAZoCWgPQwhRLSKKSZlxQJSGlFKUaBVL9mgWR0CWM94xUNrkdX2UKGgGaAloD0MI9goL7scNcECUhpRSlGgVTS0BaBZHQJY2KMcZLqV1fZQoaAZoCWgPQwiBs5QsZ45wQJSGlFKUaBVNJwFoFkdAljYqd+Xqq3V9lChoBmgJaA9DCLWjOEfdRXBAlIaUUpRoFU1KAWgWR0CWOFHIp6QedX2UKGgGaAloD0MIKbNBJpl2cECUhpRSlGgVTRkBaBZHQJY5N56dDpl1fZQoaAZoCWgPQwgSL0/nyoByQJSGlFKUaBVNRAFoFkdAljtRDgIhQnV9lChoBmgJaA9DCMb9R6bDdG9AlIaUUpRoFU1CAWgWR0CWO7AdGRV7dX2UKGgGaAloD0MILNhGPFlucECUhpRSlGgVTUoBaBZHQJY75VsDW9V1fZQoaAZoCWgPQwjdQ8L3vhlyQJSGlFKUaBVL2mgWR0CWPEHARChOdX2UKGgGaAloD0MI8rImFjjicECUhpRSlGgVTUgBaBZHQJY8tSFXaJ11fZQoaAZoCWgPQwhWRiOfFxhzQJSGlFKUaBVNDAFoFkdAlj1HPu5SWXV9lChoBmgJaA9DCHrCEg9oT3JAlIaUUpRoFU0PAWgWR0CWPv8XenAJdX2UKGgGaAloD0MI4dHGEWt6cUCUhpRSlGgVTSABaBZHQJY/4QlKK511fZQoaAZoCWgPQwgEOL2L91s/QJSGlFKUaBVL3GgWR0CWQFWtEG7jdX2UKGgGaAloD0MIXqJ6a+A0cUCUhpRSlGgVTQcBaBZHQJZAvdk8Rth1fZQoaAZoCWgPQwjdmnRb4gBwQJSGlFKUaBVL+2gWR0CWQMJiy6czdX2UKGgGaAloD0MIofgx5q5jb0CUhpRSlGgVTSYBaBZHQJZCO+bmU4d1fZQoaAZoCWgPQwgx7gbRWv9uQJSGlFKUaBVNFQFoFkdAlkJ6lxffGnV9lChoBmgJaA9DCImbU8mAkGxAlIaUUpRoFUvyaBZHQJZDRkCmuT11fZQoaAZoCWgPQwh7LlOT4ABxQJSGlFKUaBVNggFoFkdAlkN/AXVLBnV9lChoBmgJaA9DCII2OXySn3FAlIaUUpRoFU0DAWgWR0CWRNHC4z7/dX2UKGgGaAloD0MIxGD+CpkobUCUhpRSlGgVTTcBaBZHQJZFTwPRRdh1fZQoaAZoCWgPQwgj2o6pu4BvQJSGlFKUaBVNIAFoFkdAlkXA1vVEu3V9lChoBmgJaA9DCFSQn43cqWxAlIaUUpRoFUvtaBZHQJZGYrQPZqV1fZQoaAZoCWgPQwgRct7/x5NvQJSGlFKUaBVNAQFoFkdAlkcFF2FFlXV9lChoBmgJaA9DCKOSOgHN6HBAlIaUUpRoFU1uAWgWR0CWRy/pMYdidX2UKGgGaAloD0MIDeTZ5VukcUCUhpRSlGgVS/poFkdAlkfUhRqGlHV9lChoBmgJaA9DCGcqxCPxK3FAlIaUUpRoFU0PAWgWR0CWR/s1sLv1dX2UKGgGaAloD0MILuQR3EiscECUhpRSlGgVTRIBaBZHQJZJYXCTEBN1fZQoaAZoCWgPQwiRuMfSB71yQJSGlFKUaBVNAAFoFkdAlkmG+j/Mn3V9lChoBmgJaA9DCHnMQGW8LXFAlIaUUpRoFU0YAWgWR0CWSkLRrrPddX2UKGgGaAloD0MI7bd2oiSfUECUhpRSlGgVS+loFkdAlkqSoOx0MnV9lChoBmgJaA9DCJ5cUyAz0nBAlIaUUpRoFU0vAWgWR0CWSzEovzvrdX2UKGgGaAloD0MInX+77FdCc0CUhpRSlGgVTSwBaBZHQJZL1WilBQh1fZQoaAZoCWgPQwjECOHRxtZvQJSGlFKUaBVNCwFoFkdAlkwhStNi6XV9lChoBmgJaA9DCK8jDtlA0ExAlIaUUpRoFUu6aBZHQJZMcJ6Y3Nt1fZQoaAZoCWgPQwhq+uyAq3pwQJSGlFKUaBVNPgFoFkdAlkzASSNfgXV9lChoBmgJaA9DCOik940vI21AlIaUUpRoFU0QAWgWR0CWTyc2R7qqdX2UKGgGaAloD0MIvkupS4ZGcECUhpRSlGgVTSoBaBZHQJZPRTLns9l1fZQoaAZoCWgPQwiCb5o+OxVxQJSGlFKUaBVNeAFoFkdAlk+pO8Cgb3V9lChoBmgJaA9DCAyx+iPMwXBAlIaUUpRoFU0WAWgWR0CWT/RJ2+wldX2UKGgGaAloD0MIjEtV2mJDb0CUhpRSlGgVS+loFkdAllCGeUY8+3V9lChoBmgJaA9DCFExzt+E4mtAlIaUUpRoFU0BAWgWR0CWUJClJpWWdX2UKGgGaAloD0MI83LYfQdHc0CUhpRSlGgVTTUBaBZHQJZRAq6OHWV1fZQoaAZoCWgPQwgI46dxryNxQJSGlFKUaBVL+2gWR0CWUQronrprdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 310,
|
80 |
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
EC_LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cd4c1429bde74e67db76f10374c7bac40c43a465caa8f88ecdf5be25684e3f4
|
3 |
+
size 87929
|
EC_LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e68ed6fb12967b022bfd54ab305fb691592cfbcc2e088066ef43c1b5e018348b
|
3 |
size 43393
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.68 +/- 17.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23ea241dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23ea241e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23ea241ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23ea241f70>", "_build": "<function ActorCriticPolicy._build at 0x7f23ea1c6040>", "forward": "<function ActorCriticPolicy.forward at 0x7f23ea1c60d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23ea1c6160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23ea1c61f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23ea1c6280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23ea1c6310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23ea1c63a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23ea1c6430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f23ea1c5030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677318401947766081, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALOWC76gOgI/nwC5vZSWkb68Y668ItOSvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1Em2uhxpb0CUhpRSlIwBbJRL/owBdJRHQKI5EU3XI2h1fZQoaAZoCWgPQwjQgHozar4KQJSGlFKUaBVL5GgWR0CiOb2CuloEdX2UKGgGaAloD0MIuB/wwABiLkCUhpRSlGgVS9RoFkdAojpdhy8zynV9lChoBmgJaA9DCLpqniNyPG1AlIaUUpRoFU0mAWgWR0CiO0yE+PildX2UKGgGaAloD0MIcHfWbru+bkCUhpRSlGgVTR8BaBZHQKI8M25xzaN1fZQoaAZoCWgPQwg2zTtOUZ5tQJSGlFKUaBVL+GgWR0CiPQgHVwxWdX2UKGgGaAloD0MIvJUlOkthYUCUhpRSlGgVTegDaBZHQKJCRpi7TUl1fZQoaAZoCWgPQwguWRXhphlrQJSGlFKUaBVN9QFoFkdAokQUY0l7dHV9lChoBmgJaA9DCCfYf50bIW5AlIaUUpRoFU0EAWgWR0CiROKtHQQddX2UKGgGaAloD0MIYASNmUQQb0CUhpRSlGgVS/9oFkdAokWo22oegnV9lChoBmgJaA9DCLJkjuVd029AlIaUUpRoFU1FAWgWR0CiSGwOFxn4dX2UKGgGaAloD0MIIhecwd+bWECUhpRSlGgVTegDaBZHQKJMXnNgSe11fZQoaAZoCWgPQwjnjZPCvPRtQJSGlFKUaBVL/WgWR0CiTXHN5dGBdX2UKGgGaAloD0MIeouH9xwpaECUhpRSlGgVTRsDaBZHQKJVIAbyYol1fZQoaAZoCWgPQwgzw0ZZ/0JwQJSGlFKUaBVNBgFoFkdAolY6A4GUwHV9lChoBmgJaA9DCCi4WFGDPnBAlIaUUpRoFU0CAWgWR0CiVv7RWtEHdX2UKGgGaAloD0MIZOjYQaXVbkCUhpRSlGgVTR0BaBZHQKJX2EZiuuB1fZQoaAZoCWgPQwgyc4HL48tsQJSGlFKUaBVNGwFoFkdAoli8GC7K73V9lChoBmgJaA9DCCqRRC/jH3BAlIaUUpRoFU0WAWgWR0CiWYufEn9fdX2UKGgGaAloD0MIDp90IkE2bkCUhpRSlGgVTfwBaBZHQKJbOJdjXnR1fZQoaAZoCWgPQwjPnsvUpE5wQJSGlFKUaBVNEQFoFkdAol2s7Sy+pXV9lChoBmgJaA9DCIEiFjHslW5AlIaUUpRoFUv2aBZHQKJebTKDCgt1fZQoaAZoCWgPQwjwpfCgGc5xQJSGlFKUaBVL6mgWR0CiXyLHMlkZdX2UKGgGaAloD0MIcJaS5SRabkCUhpRSlGgVTRcBaBZHQKJf/tPYWcl1fZQoaAZoCWgPQwh/g/bqY4luQJSGlFKUaBVNFwFoFkdAomDRrpJPInV9lChoBmgJaA9DCC0nofSFaEFAlIaUUpRoFUvVaBZHQKJhdocJdB11fZQoaAZoCWgPQwihoupXOqtuQJSGlFKUaBVNAwFoFkdAomJKo4uK43V9lChoBmgJaA9DCE2+2ebG92xAlIaUUpRoFU0CAWgWR0CiYw5p8F6idX2UKGgGaAloD0MIM8SxLq4UcECUhpRSlGgVTRsBaBZHQKJlfEUCaJB1fZQoaAZoCWgPQwh/h6JAHzlwQJSGlFKUaBVL/2gWR0CiZkj5sTFmdX2UKGgGaAloD0MIJzCd1m30cECUhpRSlGgVTQUBaBZHQKJnFbaAWi11fZQoaAZoCWgPQwjN5nEYjCJwQJSGlFKUaBVNIwFoFkdAomgBqXWvsHV9lChoBmgJaA9DCLSrkPKT1W1AlIaUUpRoFU1nAWgWR0CiaT0FB6a9dX2UKGgGaAloD0MIuw9AahO7RECUhpRSlGgVS9BoFkdAomnUc81XNnV9lChoBmgJaA9DCMnJxK3CHHFAlIaUUpRoFUv9aBZHQKJq0WxhUip1fZQoaAZoCWgPQwjGaYgqfDNuQJSGlFKUaBVNFAFoFkdAom4VdTo+wHV9lChoBmgJaA9DCAQBMnTsgA1AlIaUUpRoFUveaBZHQKJvA3kxREZ1fZQoaAZoCWgPQwh0CBwJ9GFwQJSGlFKUaBVNFAFoFkdAonA5ttQ9BHV9lChoBmgJaA9DCAdeLXfm9G1AlIaUUpRoFU0BAWgWR0CicVIFFDv3dX2UKGgGaAloD0MIylNW0/WybECUhpRSlGgVS/toFkdAonJrgflp5HV9lChoBmgJaA9DCNMUAU7vcjjAlIaUUpRoFUvqaBZHQKJzYxOclPd1fZQoaAZoCWgPQwg/Gk6ZG7dvQJSGlFKUaBVNFQFoFkdAonQzXz19OXV9lChoBmgJaA9DCOKt828XW3FAlIaUUpRoFU0FAWgWR0CidPn8KohqdX2UKGgGaAloD0MIAqCKG7cNb0CUhpRSlGgVTRQBaBZHQKJ3anQY1pF1fZQoaAZoCWgPQwgcsRafAoJtQJSGlFKUaBVNIwFoFkdAonhUwBYFJXV9lChoBmgJaA9DCCKJXkaxcmxAlIaUUpRoFUv/aBZHQKJ5SYu01Il1fZQoaAZoCWgPQwigpSvYRmpdQJSGlFKUaBVN6ANoFkdAon8zAvcrRXV9lChoBmgJaA9DCNKm6h5Zbm5AlIaUUpRoFU0KAWgWR0CigFjL8rI6dX2UKGgGaAloD0MIeQPMfAc8b0CUhpRSlGgVTQcBaBZHQKKDQKl54W11fZQoaAZoCWgPQwid9/9xgslwQJSGlFKUaBVNAwFoFkdAooQJxWDHwXV9lChoBmgJaA9DCJ+qQgOxIHBAlIaUUpRoFU0CAWgWR0CihNQXqJMydX2UKGgGaAloD0MIXtkFg2u6bUCUhpRSlGgVTQgBaBZHQKKFlKHO8kF1fZQoaAZoCWgPQwh/3795cWFaQJSGlFKUaBVN6ANoFkdAooq3GACnxnV9lChoBmgJaA9DCOW5vg8HHG5AlIaUUpRoFU0BAWgWR0CijkKRlpXZdX2UKGgGaAloD0MIxOxl22nfbkCUhpRSlGgVTSsBaBZHQKKPn4FA3UB1fZQoaAZoCWgPQwgCYadYtRtvQJSGlFKUaBVNBwFoFkdAopDQv114gXV9lChoBmgJaA9DCKzkY3eBj29AlIaUUpRoFU0UAWgWR0Cikb44p+c6dX2UKGgGaAloD0MI0SSxpFyLbUCUhpRSlGgVTSwBaBZHQKKSs5GSZBt1fZQoaAZoCWgPQwj83xEVqvhsQJSGlFKUaBVNDAFoFkdAopOGAuqWC3V9lChoBmgJaA9DCCo7/aCutG9AlIaUUpRoFU0VAWgWR0CilGLmp2lmdX2UKGgGaAloD0MIWoKMgApHcECUhpRSlGgVTSUBaBZHQKKVStsenyd1fZQoaAZoCWgPQwj7ljldlthuQJSGlFKUaBVNJQFoFkdAopfFEd/8VHV9lChoBmgJaA9DCAe0dAXbJ25AlIaUUpRoFU0rAWgWR0CimKzbnHNpdX2UKGgGaAloD0MI0UAsmzlncECUhpRSlGgVTQUBaBZHQKKZcanaWX11fZQoaAZoCWgPQwh+xoUDIeBZQJSGlFKUaBVN6ANoFkdAop4piw0O3HV9lChoBmgJaA9DCKoqNBBLeW1AlIaUUpRoFU0GAWgWR0CioJ0BwMpgdX2UKGgGaAloD0MId0zdld1uYECUhpRSlGgVTegDaBZHQKKkTLAYYSB1fZQoaAZoCWgPQwiV1t8SgGBvQJSGlFKUaBVNCgFoFkdAoqUrCk43m3V9lChoBmgJaA9DCGu3XWiuXz9AlIaUUpRoFUvSaBZHQKKmCkB0ZFZ1fZQoaAZoCWgPQwgEyTuHMtQ+QJSGlFKUaBVL6GgWR0CipvPs7dSEdX2UKGgGaAloD0MI63O1FbvDcECUhpRSlGgVTSEBaBZHQKKoMP3i7051fZQoaAZoCWgPQwgaprbUgQxwQJSGlFKUaBVNJwFoFkdAoqveMju8b3V9lChoBmgJaA9DCCqRRC+jqm9AlIaUUpRoFU0fAWgWR0CirTOP/7zkdX2UKGgGaAloD0MIGedvQiFWMMCUhpRSlGgVS9xoFkdAoq4mE4//vXV9lChoBmgJaA9DCEj8ijUchHBAlIaUUpRoFU0gAWgWR0Cir0N+CsfadX2UKGgGaAloD0MId9oaEYycbECUhpRSlGgVTfwBaBZHQKKxGjvd/KB1fZQoaAZoCWgPQwjfUs4Xe4luQJSGlFKUaBVNBwFoFkdAorHtaQmu1XV9lChoBmgJaA9DCGptGtvr22xAlIaUUpRoFU0XAWgWR0CitGl1SwW4dX2UKGgGaAloD0MIp3fxftz5bkCUhpRSlGgVTRcBaBZHQKK1SrdWQwN1fZQoaAZoCWgPQwiRDaSLTU8+QJSGlFKUaBVNiwFoFkdAora2Ml1KXnV9lChoBmgJaA9DCHtntFVJfG9AlIaUUpRoFUv8aBZHQKK3dEQXhwV1fZQoaAZoCWgPQwhLWYY41mEzQJSGlFKUaBVL4GgWR0CiuB6aLGaQdX2UKGgGaAloD0MIlE+PbZk9b0CUhpRSlGgVTScBaBZHQKK5BlHz6Jt1fZQoaAZoCWgPQwhIF5tWCmtcQJSGlFKUaBVN6ANoFkdAor7j9hqj8HV9lChoBmgJaA9DCPNXyFwZR29AlIaUUpRoFU0CAWgWR0Civ7MiSq2jdX2UKGgGaAloD0MIH0q05PHDXUCUhpRSlGgVTegDaBZHQKLEbGmUGFB1fZQoaAZoCWgPQwiiYMYUrCxuQJSGlFKUaBVNAAFoFkdAosV6UaAFxHV9lChoBmgJaA9DCEqWk1D6AgrAlIaUUpRoFUvkaBZHQKLIs9L6DXh1fZQoaAZoCWgPQwiojep0IL88QJSGlFKUaBVL32gWR0CiybSy2QXAdX2UKGgGaAloD0MIJeZZSatkbECUhpRSlGgVTREBaBZHQKLK/GZuyeJ1fZQoaAZoCWgPQwiBJVex+Fk4QJSGlFKUaBVL52gWR0CizAQGW2PUdX2UKGgGaAloD0MIE/OspBVjbkCUhpRSlGgVTWYBaBZHQKLNmDaoMrp1fZQoaAZoCWgPQwgyOiAJ++ppQJSGlFKUaBVNQwFoFkdAos6iEL6UJXV9lChoBmgJaA9DCPK20mszlG5AlIaUUpRoFU05AWgWR0Ciz6ZqdpZfdX2UKGgGaAloD0MIXOhKBCqmcECUhpRSlGgVTTwBaBZHQKLSQa/ATIx1fZQoaAZoCWgPQwgAGqVL/9JtQJSGlFKUaBVNRwFoFkdAotNSH2ys0nV9lChoBmgJaA9DCB10CYfeU29AlIaUUpRoFU0GAWgWR0Ci1CA3DNyHdX2UKGgGaAloD0MIroBCPX1rbUCUhpRSlGgVTSsBaBZHQKLVDIPK+zt1fZQoaAZoCWgPQwh06spneUpsQJSGlFKUaBVNVwJoFkdAotcRQ79ycXV9lChoBmgJaA9DCDaQLjati3FAlIaUUpRoFU0YAWgWR0Ci1/AMc6vJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2445, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23ea241dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23ea241e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23ea241ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23ea241f70>", "_build": "<function ActorCriticPolicy._build at 0x7f23ea1c6040>", "forward": "<function ActorCriticPolicy.forward at 0x7f23ea1c60d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23ea1c6160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23ea1c61f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23ea1c6280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23ea1c6310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23ea1c63a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23ea1c6430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f23ea1c5030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677323685890363825, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAA1B3j3IPFY/8iebPRxzyL7YcfE9fEEFPAAAAAAAAAAAGnIKPYWxMj+YPkQ9D/Wfvsl2Qrw+Rms8AAAAAAAAAAAASEa9F/YmPp4NDT600Jq+ZZMvPVRIsLwAAAAAAAAAAGb9Ej5q0xI+JCaevk7BJL7HFn299NMmvQAAAAAAAAAAmgpXPStUnT1uQfK9CzMdvvGJjLyFNwW9AAAAAAAAAABmFnU9yRLUPq3/p71C/aK+gl10u7X8tL0AAAAAAAAAAFrP6z1uJwM/CHqSOgd8tr5sCxM9mky+vAAAAAAAAAAAIOUvPtcSWj+WWko9cVrNvi7QQj57RhG+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfPMbJlo4ckCUhpRSlIwBbJRNDAGMAXSUR0CV9FQFLWZrdX2UKGgGaAloD0MI1GUxsfnIbUCUhpRSlGgVS/hoFkdAlfSBVIZqEnV9lChoBmgJaA9DCHrIlA8BfHBAlIaUUpRoFUviaBZHQJX2hjriVB51fZQoaAZoCWgPQwh7EW3HFBNzQJSGlFKUaBVNOAFoFkdAlfeTHsC1Z3V9lChoBmgJaA9DCEikbfxJ/XFAlIaUUpRoFU03AWgWR0CV99jlxOtXdX2UKGgGaAloD0MI8djPYik0ckCUhpRSlGgVS/hoFkdAlfnycLBsRHV9lChoBmgJaA9DCJG1hlK7jHBAlIaUUpRoFU0MAWgWR0CV+lPbfxc3dX2UKGgGaAloD0MIQZ5dvjVFckCUhpRSlGgVTQABaBZHQJX7YvAXVLB1fZQoaAZoCWgPQwhlVYSbTGRxQJSGlFKUaBVNYQFoFkdAlf2I20iQk3V9lChoBmgJaA9DCOc1domq1HJAlIaUUpRoFU0bAWgWR0CV/cW4EwFldX2UKGgGaAloD0MIQ5CDEqYDcUCUhpRSlGgVTRABaBZHQJX+YsasIVx1fZQoaAZoCWgPQwiKraBpiRBnQJSGlFKUaBVNRwNoFkdAlf6EqDsdDXV9lChoBmgJaA9DCEht4uR+I29AlIaUUpRoFU0GAWgWR0CV/4VaOgg6dX2UKGgGaAloD0MIHJdxUwPTc0CUhpRSlGgVTQABaBZHQJX/pCswL3N1fZQoaAZoCWgPQwioGVJF8QlSQJSGlFKUaBVL1WgWR0CWAQOh0yP/dX2UKGgGaAloD0MIlumXiDdkckCUhpRSlGgVTdYBaBZHQJYBcUO/cnF1fZQoaAZoCWgPQwhybhPuFVxvQJSGlFKUaBVNRwFoFkdAlgF8bNr0rnV9lChoBmgJaA9DCF7ZBYMrPXBAlIaUUpRoFUv4aBZHQJYB0uscQy11fZQoaAZoCWgPQwib4nFR7SBwQJSGlFKUaBVL8mgWR0CWAj4mTkhidX2UKGgGaAloD0MIStBf6BFZb0CUhpRSlGgVTRkBaBZHQJYC7opx3mp1fZQoaAZoCWgPQwjWx0Pf3bpyQJSGlFKUaBVNKAFoFkdAlgRAzDXOGHV9lChoBmgJaA9DCOG3IcZr2G5AlIaUUpRoFU08AWgWR0CWBHo5PuXvdX2UKGgGaAloD0MItCJqos9ub0CUhpRSlGgVS+FoFkdAlgSKwD/2kHV9lChoBmgJaA9DCPqZet3iv3FAlIaUUpRoFU0BAWgWR0CWBUxjJ+2FdX2UKGgGaAloD0MIa7qe6LrINsCUhpRSlGgVS6BoFkdAlgVcFQl8gXV9lChoBmgJaA9DCOYHrvIEQnFAlIaUUpRoFU0xAWgWR0CWBgo73fygdX2UKGgGaAloD0MIu3uA7gthckCUhpRSlGgVTSUBaBZHQJYGqa1Cw8p1fZQoaAZoCWgPQwiNRdPZiaxwQJSGlFKUaBVNUwFoFkdAlgbsOG0u2HV9lChoBmgJaA9DCL4W9N4YxEZAlIaUUpRoFUvGaBZHQJYHMKrq+rV1fZQoaAZoCWgPQwg9uaZA5tRwQJSGlFKUaBVNAgFoFkdAlghUDU3GXHV9lChoBmgJaA9DCC1A22qWF3BAlIaUUpRoFU0+AWgWR0CWCWPyCnP3dX2UKGgGaAloD0MInb6er1kzb0CUhpRSlGgVTSoBaBZHQJYKRPHktEp1fZQoaAZoCWgPQwiwARHiClhwQJSGlFKUaBVNMQFoFkdAlgpVh5PdmHV9lChoBmgJaA9DCEvoLomzQ25AlIaUUpRoFUv6aBZHQJYLmePJaJR1fZQoaAZoCWgPQwjIQJ5dvp9xQJSGlFKUaBVNEQFoFkdAlguiMglniHV9lChoBmgJaA9DCB2OrtLdY3NAlIaUUpRoFU1iAWgWR0CWDAjCpFTedX2UKGgGaAloD0MIxooaTEMmc0CUhpRSlGgVTXYBaBZHQJYM/V09yLh1fZQoaAZoCWgPQwi4sdmR6uJxQJSGlFKUaBVNEgFoFkdAlg03jIaLoHV9lChoBmgJaA9DCErx8QlZ6XFAlIaUUpRoFU0PAWgWR0CWDguoxYaHdX2UKGgGaAloD0MIaLEUyVe+cUCUhpRSlGgVTRUBaBZHQJYO3R6Ww/x1fZQoaAZoCWgPQwjSqwFKwypxQJSGlFKUaBVNFgFoFkdAlg7vLLZBcHV9lChoBmgJaA9DCL8s7dTc7W5AlIaUUpRoFUv4aBZHQJYPjoKUmlZ1fZQoaAZoCWgPQwjhRsoWifNxQJSGlFKUaBVNIgFoFkdAlil63I+4b3V9lChoBmgJaA9DCCzUmubd43JAlIaUUpRoFUv/aBZHQJYqorhBJI11fZQoaAZoCWgPQwjerMH76v9wQJSGlFKUaBVNPgFoFkdAliq28VYZEXV9lChoBmgJaA9DCAu45/nTEXJAlIaUUpRoFU0GAWgWR0CWLGSh8IAwdX2UKGgGaAloD0MI1nPS+4ZAckCUhpRSlGgVTTwBaBZHQJYsbLV4HHF1fZQoaAZoCWgPQwhGQIUjyJJyQJSGlFKUaBVNGQFoFkdAli3ekcjqwHV9lChoBmgJaA9DCA5lqIppDHNAlIaUUpRoFU04AWgWR0CWLr5NXYDldX2UKGgGaAloD0MIJNHLKBavcECUhpRSlGgVS+doFkdAli7iQo1DSnV9lChoBmgJaA9DCEBoPXzZb3NAlIaUUpRoFU0+AWgWR0CWL/jAzpHJdX2UKGgGaAloD0MIB5eOOU/mbkCUhpRSlGgVTTIBaBZHQJYx/iMo+fR1fZQoaAZoCWgPQwj9FMeB1zhvQJSGlFKUaBVNBAFoFkdAljKzJU5uInV9lChoBmgJaA9DCJWbqKX5+nFAlIaUUpRoFU0UAWgWR0CWMwzru6VddX2UKGgGaAloD0MIcO8a9KW+cUCUhpRSlGgVTVsBaBZHQJYzDoUzsQd1fZQoaAZoCWgPQwhRLSKKSZlxQJSGlFKUaBVL9mgWR0CWM94xUNrkdX2UKGgGaAloD0MI9goL7scNcECUhpRSlGgVTS0BaBZHQJY2KMcZLqV1fZQoaAZoCWgPQwiBs5QsZ45wQJSGlFKUaBVNJwFoFkdAljYqd+Xqq3V9lChoBmgJaA9DCLWjOEfdRXBAlIaUUpRoFU1KAWgWR0CWOFHIp6QedX2UKGgGaAloD0MIKbNBJpl2cECUhpRSlGgVTRkBaBZHQJY5N56dDpl1fZQoaAZoCWgPQwgSL0/nyoByQJSGlFKUaBVNRAFoFkdAljtRDgIhQnV9lChoBmgJaA9DCMb9R6bDdG9AlIaUUpRoFU1CAWgWR0CWO7AdGRV7dX2UKGgGaAloD0MILNhGPFlucECUhpRSlGgVTUoBaBZHQJY75VsDW9V1fZQoaAZoCWgPQwjdQ8L3vhlyQJSGlFKUaBVL2mgWR0CWPEHARChOdX2UKGgGaAloD0MI8rImFjjicECUhpRSlGgVTUgBaBZHQJY8tSFXaJ11fZQoaAZoCWgPQwhWRiOfFxhzQJSGlFKUaBVNDAFoFkdAlj1HPu5SWXV9lChoBmgJaA9DCHrCEg9oT3JAlIaUUpRoFU0PAWgWR0CWPv8XenAJdX2UKGgGaAloD0MI4dHGEWt6cUCUhpRSlGgVTSABaBZHQJY/4QlKK511fZQoaAZoCWgPQwgEOL2L91s/QJSGlFKUaBVL3GgWR0CWQFWtEG7jdX2UKGgGaAloD0MIXqJ6a+A0cUCUhpRSlGgVTQcBaBZHQJZAvdk8Rth1fZQoaAZoCWgPQwjdmnRb4gBwQJSGlFKUaBVL+2gWR0CWQMJiy6czdX2UKGgGaAloD0MIofgx5q5jb0CUhpRSlGgVTSYBaBZHQJZCO+bmU4d1fZQoaAZoCWgPQwgx7gbRWv9uQJSGlFKUaBVNFQFoFkdAlkJ6lxffGnV9lChoBmgJaA9DCImbU8mAkGxAlIaUUpRoFUvyaBZHQJZDRkCmuT11fZQoaAZoCWgPQwh7LlOT4ABxQJSGlFKUaBVNggFoFkdAlkN/AXVLBnV9lChoBmgJaA9DCII2OXySn3FAlIaUUpRoFU0DAWgWR0CWRNHC4z7/dX2UKGgGaAloD0MIxGD+CpkobUCUhpRSlGgVTTcBaBZHQJZFTwPRRdh1fZQoaAZoCWgPQwgj2o6pu4BvQJSGlFKUaBVNIAFoFkdAlkXA1vVEu3V9lChoBmgJaA9DCFSQn43cqWxAlIaUUpRoFUvtaBZHQJZGYrQPZqV1fZQoaAZoCWgPQwgRct7/x5NvQJSGlFKUaBVNAQFoFkdAlkcFF2FFlXV9lChoBmgJaA9DCKOSOgHN6HBAlIaUUpRoFU1uAWgWR0CWRy/pMYdidX2UKGgGaAloD0MIDeTZ5VukcUCUhpRSlGgVS/poFkdAlkfUhRqGlHV9lChoBmgJaA9DCGcqxCPxK3FAlIaUUpRoFU0PAWgWR0CWR/s1sLv1dX2UKGgGaAloD0MILuQR3EiscECUhpRSlGgVTRIBaBZHQJZJYXCTEBN1fZQoaAZoCWgPQwiRuMfSB71yQJSGlFKUaBVNAAFoFkdAlkmG+j/Mn3V9lChoBmgJaA9DCHnMQGW8LXFAlIaUUpRoFU0YAWgWR0CWSkLRrrPddX2UKGgGaAloD0MI7bd2oiSfUECUhpRSlGgVS+loFkdAlkqSoOx0MnV9lChoBmgJaA9DCJ5cUyAz0nBAlIaUUpRoFU0vAWgWR0CWSzEovzvrdX2UKGgGaAloD0MInX+77FdCc0CUhpRSlGgVTSwBaBZHQJZL1WilBQh1fZQoaAZoCWgPQwjECOHRxtZvQJSGlFKUaBVNCwFoFkdAlkwhStNi6XV9lChoBmgJaA9DCK8jDtlA0ExAlIaUUpRoFUu6aBZHQJZMcJ6Y3Nt1fZQoaAZoCWgPQwhq+uyAq3pwQJSGlFKUaBVNPgFoFkdAlkzASSNfgXV9lChoBmgJaA9DCOik940vI21AlIaUUpRoFU0QAWgWR0CWTyc2R7qqdX2UKGgGaAloD0MIvkupS4ZGcECUhpRSlGgVTSoBaBZHQJZPRTLns9l1fZQoaAZoCWgPQwiCb5o+OxVxQJSGlFKUaBVNeAFoFkdAlk+pO8Cgb3V9lChoBmgJaA9DCAyx+iPMwXBAlIaUUpRoFU0WAWgWR0CWT/RJ2+wldX2UKGgGaAloD0MIjEtV2mJDb0CUhpRSlGgVS+loFkdAllCGeUY8+3V9lChoBmgJaA9DCFExzt+E4mtAlIaUUpRoFU0BAWgWR0CWUJClJpWWdX2UKGgGaAloD0MI83LYfQdHc0CUhpRSlGgVTTUBaBZHQJZRAq6OHWV1fZQoaAZoCWgPQwgI46dxryNxQJSGlFKUaBVL+2gWR0CWUQronrprdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 261.67505576996393, "std_reward": 17.58662065276365, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-25T11:48:40.125501"}
|