emre06c commited on
Commit
1315140
·
1 Parent(s): 6f96e61

My first model for RL using env:LunarLander-v2

Browse files
EC_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17f51302425c87256c372af1706bc32fa8f3f1de8c8bd5955bd224a1c94058b8
3
+ size 146859
EC_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
EC_LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23ea241dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23ea241e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23ea241ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23ea241f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f23ea1c6040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f23ea1c60d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23ea1c6160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23ea1c61f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f23ea1c6280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23ea1c6310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23ea1c63a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23ea1c6430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f23ea1c5030>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1001472,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677318401947766081,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALOWC76gOgI/nwC5vZSWkb68Y668ItOSvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0014719999999999178,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1Em2uhxpb0CUhpRSlIwBbJRL/owBdJRHQKI5EU3XI2h1fZQoaAZoCWgPQwjQgHozar4KQJSGlFKUaBVL5GgWR0CiOb2CuloEdX2UKGgGaAloD0MIuB/wwABiLkCUhpRSlGgVS9RoFkdAojpdhy8zynV9lChoBmgJaA9DCLpqniNyPG1AlIaUUpRoFU0mAWgWR0CiO0yE+PildX2UKGgGaAloD0MIcHfWbru+bkCUhpRSlGgVTR8BaBZHQKI8M25xzaN1fZQoaAZoCWgPQwg2zTtOUZ5tQJSGlFKUaBVL+GgWR0CiPQgHVwxWdX2UKGgGaAloD0MIvJUlOkthYUCUhpRSlGgVTegDaBZHQKJCRpi7TUl1fZQoaAZoCWgPQwguWRXhphlrQJSGlFKUaBVN9QFoFkdAokQUY0l7dHV9lChoBmgJaA9DCCfYf50bIW5AlIaUUpRoFU0EAWgWR0CiROKtHQQddX2UKGgGaAloD0MIYASNmUQQb0CUhpRSlGgVS/9oFkdAokWo22oegnV9lChoBmgJaA9DCLJkjuVd029AlIaUUpRoFU1FAWgWR0CiSGwOFxn4dX2UKGgGaAloD0MIIhecwd+bWECUhpRSlGgVTegDaBZHQKJMXnNgSe11fZQoaAZoCWgPQwjnjZPCvPRtQJSGlFKUaBVL/WgWR0CiTXHN5dGBdX2UKGgGaAloD0MIeouH9xwpaECUhpRSlGgVTRsDaBZHQKJVIAbyYol1fZQoaAZoCWgPQwgzw0ZZ/0JwQJSGlFKUaBVNBgFoFkdAolY6A4GUwHV9lChoBmgJaA9DCCi4WFGDPnBAlIaUUpRoFU0CAWgWR0CiVv7RWtEHdX2UKGgGaAloD0MIZOjYQaXVbkCUhpRSlGgVTR0BaBZHQKJX2EZiuuB1fZQoaAZoCWgPQwgyc4HL48tsQJSGlFKUaBVNGwFoFkdAoli8GC7K73V9lChoBmgJaA9DCCqRRC/jH3BAlIaUUpRoFU0WAWgWR0CiWYufEn9fdX2UKGgGaAloD0MIDp90IkE2bkCUhpRSlGgVTfwBaBZHQKJbOJdjXnR1fZQoaAZoCWgPQwjPnsvUpE5wQJSGlFKUaBVNEQFoFkdAol2s7Sy+pXV9lChoBmgJaA9DCIEiFjHslW5AlIaUUpRoFUv2aBZHQKJebTKDCgt1fZQoaAZoCWgPQwjwpfCgGc5xQJSGlFKUaBVL6mgWR0CiXyLHMlkZdX2UKGgGaAloD0MIcJaS5SRabkCUhpRSlGgVTRcBaBZHQKJf/tPYWcl1fZQoaAZoCWgPQwh/g/bqY4luQJSGlFKUaBVNFwFoFkdAomDRrpJPInV9lChoBmgJaA9DCC0nofSFaEFAlIaUUpRoFUvVaBZHQKJhdocJdB11fZQoaAZoCWgPQwihoupXOqtuQJSGlFKUaBVNAwFoFkdAomJKo4uK43V9lChoBmgJaA9DCE2+2ebG92xAlIaUUpRoFU0CAWgWR0CiYw5p8F6idX2UKGgGaAloD0MIM8SxLq4UcECUhpRSlGgVTRsBaBZHQKJlfEUCaJB1fZQoaAZoCWgPQwh/h6JAHzlwQJSGlFKUaBVL/2gWR0CiZkj5sTFmdX2UKGgGaAloD0MIJzCd1m30cECUhpRSlGgVTQUBaBZHQKJnFbaAWi11fZQoaAZoCWgPQwjN5nEYjCJwQJSGlFKUaBVNIwFoFkdAomgBqXWvsHV9lChoBmgJaA9DCLSrkPKT1W1AlIaUUpRoFU1nAWgWR0CiaT0FB6a9dX2UKGgGaAloD0MIuw9AahO7RECUhpRSlGgVS9BoFkdAomnUc81XNnV9lChoBmgJaA9DCMnJxK3CHHFAlIaUUpRoFUv9aBZHQKJq0WxhUip1fZQoaAZoCWgPQwjGaYgqfDNuQJSGlFKUaBVNFAFoFkdAom4VdTo+wHV9lChoBmgJaA9DCAQBMnTsgA1AlIaUUpRoFUveaBZHQKJvA3kxREZ1fZQoaAZoCWgPQwh0CBwJ9GFwQJSGlFKUaBVNFAFoFkdAonA5ttQ9BHV9lChoBmgJaA9DCAdeLXfm9G1AlIaUUpRoFU0BAWgWR0CicVIFFDv3dX2UKGgGaAloD0MIylNW0/WybECUhpRSlGgVS/toFkdAonJrgflp5HV9lChoBmgJaA9DCNMUAU7vcjjAlIaUUpRoFUvqaBZHQKJzYxOclPd1fZQoaAZoCWgPQwg/Gk6ZG7dvQJSGlFKUaBVNFQFoFkdAonQzXz19OXV9lChoBmgJaA9DCOKt828XW3FAlIaUUpRoFU0FAWgWR0CidPn8KohqdX2UKGgGaAloD0MIAqCKG7cNb0CUhpRSlGgVTRQBaBZHQKJ3anQY1pF1fZQoaAZoCWgPQwgcsRafAoJtQJSGlFKUaBVNIwFoFkdAonhUwBYFJXV9lChoBmgJaA9DCCKJXkaxcmxAlIaUUpRoFUv/aBZHQKJ5SYu01Il1fZQoaAZoCWgPQwigpSvYRmpdQJSGlFKUaBVN6ANoFkdAon8zAvcrRXV9lChoBmgJaA9DCNKm6h5Zbm5AlIaUUpRoFU0KAWgWR0CigFjL8rI6dX2UKGgGaAloD0MIeQPMfAc8b0CUhpRSlGgVTQcBaBZHQKKDQKl54W11fZQoaAZoCWgPQwid9/9xgslwQJSGlFKUaBVNAwFoFkdAooQJxWDHwXV9lChoBmgJaA9DCJ+qQgOxIHBAlIaUUpRoFU0CAWgWR0CihNQXqJMydX2UKGgGaAloD0MIXtkFg2u6bUCUhpRSlGgVTQgBaBZHQKKFlKHO8kF1fZQoaAZoCWgPQwh/3795cWFaQJSGlFKUaBVN6ANoFkdAooq3GACnxnV9lChoBmgJaA9DCOW5vg8HHG5AlIaUUpRoFU0BAWgWR0CijkKRlpXZdX2UKGgGaAloD0MIxOxl22nfbkCUhpRSlGgVTSsBaBZHQKKPn4FA3UB1fZQoaAZoCWgPQwgCYadYtRtvQJSGlFKUaBVNBwFoFkdAopDQv114gXV9lChoBmgJaA9DCKzkY3eBj29AlIaUUpRoFU0UAWgWR0Cikb44p+c6dX2UKGgGaAloD0MI0SSxpFyLbUCUhpRSlGgVTSwBaBZHQKKSs5GSZBt1fZQoaAZoCWgPQwj83xEVqvhsQJSGlFKUaBVNDAFoFkdAopOGAuqWC3V9lChoBmgJaA9DCCo7/aCutG9AlIaUUpRoFU0VAWgWR0CilGLmp2lmdX2UKGgGaAloD0MIWoKMgApHcECUhpRSlGgVTSUBaBZHQKKVStsenyd1fZQoaAZoCWgPQwj7ljldlthuQJSGlFKUaBVNJQFoFkdAopfFEd/8VHV9lChoBmgJaA9DCAe0dAXbJ25AlIaUUpRoFU0rAWgWR0CimKzbnHNpdX2UKGgGaAloD0MI0UAsmzlncECUhpRSlGgVTQUBaBZHQKKZcanaWX11fZQoaAZoCWgPQwh+xoUDIeBZQJSGlFKUaBVN6ANoFkdAop4piw0O3HV9lChoBmgJaA9DCKoqNBBLeW1AlIaUUpRoFU0GAWgWR0CioJ0BwMpgdX2UKGgGaAloD0MId0zdld1uYECUhpRSlGgVTegDaBZHQKKkTLAYYSB1fZQoaAZoCWgPQwiV1t8SgGBvQJSGlFKUaBVNCgFoFkdAoqUrCk43m3V9lChoBmgJaA9DCGu3XWiuXz9AlIaUUpRoFUvSaBZHQKKmCkB0ZFZ1fZQoaAZoCWgPQwgEyTuHMtQ+QJSGlFKUaBVL6GgWR0CipvPs7dSEdX2UKGgGaAloD0MI63O1FbvDcECUhpRSlGgVTSEBaBZHQKKoMP3i7051fZQoaAZoCWgPQwgaprbUgQxwQJSGlFKUaBVNJwFoFkdAoqveMju8b3V9lChoBmgJaA9DCCqRRC+jqm9AlIaUUpRoFU0fAWgWR0CirTOP/7zkdX2UKGgGaAloD0MIGedvQiFWMMCUhpRSlGgVS9xoFkdAoq4mE4//vXV9lChoBmgJaA9DCEj8ijUchHBAlIaUUpRoFU0gAWgWR0Cir0N+CsfadX2UKGgGaAloD0MId9oaEYycbECUhpRSlGgVTfwBaBZHQKKxGjvd/KB1fZQoaAZoCWgPQwjfUs4Xe4luQJSGlFKUaBVNBwFoFkdAorHtaQmu1XV9lChoBmgJaA9DCGptGtvr22xAlIaUUpRoFU0XAWgWR0CitGl1SwW4dX2UKGgGaAloD0MIp3fxftz5bkCUhpRSlGgVTRcBaBZHQKK1SrdWQwN1fZQoaAZoCWgPQwiRDaSLTU8+QJSGlFKUaBVNiwFoFkdAora2Ml1KXnV9lChoBmgJaA9DCHtntFVJfG9AlIaUUpRoFUv8aBZHQKK3dEQXhwV1fZQoaAZoCWgPQwhLWYY41mEzQJSGlFKUaBVL4GgWR0CiuB6aLGaQdX2UKGgGaAloD0MIlE+PbZk9b0CUhpRSlGgVTScBaBZHQKK5BlHz6Jt1fZQoaAZoCWgPQwhIF5tWCmtcQJSGlFKUaBVN6ANoFkdAor7j9hqj8HV9lChoBmgJaA9DCPNXyFwZR29AlIaUUpRoFU0CAWgWR0Civ7MiSq2jdX2UKGgGaAloD0MIH0q05PHDXUCUhpRSlGgVTegDaBZHQKLEbGmUGFB1fZQoaAZoCWgPQwiiYMYUrCxuQJSGlFKUaBVNAAFoFkdAosV6UaAFxHV9lChoBmgJaA9DCEqWk1D6AgrAlIaUUpRoFUvkaBZHQKLIs9L6DXh1fZQoaAZoCWgPQwiojep0IL88QJSGlFKUaBVL32gWR0CiybSy2QXAdX2UKGgGaAloD0MIJeZZSatkbECUhpRSlGgVTREBaBZHQKLK/GZuyeJ1fZQoaAZoCWgPQwiBJVex+Fk4QJSGlFKUaBVL52gWR0CizAQGW2PUdX2UKGgGaAloD0MIE/OspBVjbkCUhpRSlGgVTWYBaBZHQKLNmDaoMrp1fZQoaAZoCWgPQwgyOiAJ++ppQJSGlFKUaBVNQwFoFkdAos6iEL6UJXV9lChoBmgJaA9DCPK20mszlG5AlIaUUpRoFU05AWgWR0Ciz6ZqdpZfdX2UKGgGaAloD0MIXOhKBCqmcECUhpRSlGgVTTwBaBZHQKLSQa/ATIx1fZQoaAZoCWgPQwgAGqVL/9JtQJSGlFKUaBVNRwFoFkdAotNSH2ys0nV9lChoBmgJaA9DCB10CYfeU29AlIaUUpRoFU0GAWgWR0Ci1CA3DNyHdX2UKGgGaAloD0MIroBCPX1rbUCUhpRSlGgVTSsBaBZHQKLVDIPK+zt1fZQoaAZoCWgPQwh06spneUpsQJSGlFKUaBVNVwJoFkdAotcRQ79ycXV9lChoBmgJaA9DCDaQLjati3FAlIaUUpRoFU0YAWgWR0Ci1/AMc6vJdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 2445,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
EC_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f6be57540eef1b5682a0618c26814c4282c84e7aadbe2621fa6da2b9ba69509
3
+ size 88057
EC_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4b8054e07355e0b5d9d2ccab976aeda2904d6758871b024b46bc521f21577ff
3
+ size 43393
EC_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
EC_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 195.20 +/- 99.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23ea241dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23ea241e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23ea241ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23ea241f70>", "_build": "<function ActorCriticPolicy._build at 0x7f23ea1c6040>", "forward": "<function ActorCriticPolicy.forward at 0x7f23ea1c60d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23ea1c6160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23ea1c61f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23ea1c6280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23ea1c6310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23ea1c63a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23ea1c6430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f23ea1c5030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677318401947766081, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALOWC76gOgI/nwC5vZSWkb68Y668ItOSvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1Em2uhxpb0CUhpRSlIwBbJRL/owBdJRHQKI5EU3XI2h1fZQoaAZoCWgPQwjQgHozar4KQJSGlFKUaBVL5GgWR0CiOb2CuloEdX2UKGgGaAloD0MIuB/wwABiLkCUhpRSlGgVS9RoFkdAojpdhy8zynV9lChoBmgJaA9DCLpqniNyPG1AlIaUUpRoFU0mAWgWR0CiO0yE+PildX2UKGgGaAloD0MIcHfWbru+bkCUhpRSlGgVTR8BaBZHQKI8M25xzaN1fZQoaAZoCWgPQwg2zTtOUZ5tQJSGlFKUaBVL+GgWR0CiPQgHVwxWdX2UKGgGaAloD0MIvJUlOkthYUCUhpRSlGgVTegDaBZHQKJCRpi7TUl1fZQoaAZoCWgPQwguWRXhphlrQJSGlFKUaBVN9QFoFkdAokQUY0l7dHV9lChoBmgJaA9DCCfYf50bIW5AlIaUUpRoFU0EAWgWR0CiROKtHQQddX2UKGgGaAloD0MIYASNmUQQb0CUhpRSlGgVS/9oFkdAokWo22oegnV9lChoBmgJaA9DCLJkjuVd029AlIaUUpRoFU1FAWgWR0CiSGwOFxn4dX2UKGgGaAloD0MIIhecwd+bWECUhpRSlGgVTegDaBZHQKJMXnNgSe11fZQoaAZoCWgPQwjnjZPCvPRtQJSGlFKUaBVL/WgWR0CiTXHN5dGBdX2UKGgGaAloD0MIeouH9xwpaECUhpRSlGgVTRsDaBZHQKJVIAbyYol1fZQoaAZoCWgPQwgzw0ZZ/0JwQJSGlFKUaBVNBgFoFkdAolY6A4GUwHV9lChoBmgJaA9DCCi4WFGDPnBAlIaUUpRoFU0CAWgWR0CiVv7RWtEHdX2UKGgGaAloD0MIZOjYQaXVbkCUhpRSlGgVTR0BaBZHQKJX2EZiuuB1fZQoaAZoCWgPQwgyc4HL48tsQJSGlFKUaBVNGwFoFkdAoli8GC7K73V9lChoBmgJaA9DCCqRRC/jH3BAlIaUUpRoFU0WAWgWR0CiWYufEn9fdX2UKGgGaAloD0MIDp90IkE2bkCUhpRSlGgVTfwBaBZHQKJbOJdjXnR1fZQoaAZoCWgPQwjPnsvUpE5wQJSGlFKUaBVNEQFoFkdAol2s7Sy+pXV9lChoBmgJaA9DCIEiFjHslW5AlIaUUpRoFUv2aBZHQKJebTKDCgt1fZQoaAZoCWgPQwjwpfCgGc5xQJSGlFKUaBVL6mgWR0CiXyLHMlkZdX2UKGgGaAloD0MIcJaS5SRabkCUhpRSlGgVTRcBaBZHQKJf/tPYWcl1fZQoaAZoCWgPQwh/g/bqY4luQJSGlFKUaBVNFwFoFkdAomDRrpJPInV9lChoBmgJaA9DCC0nofSFaEFAlIaUUpRoFUvVaBZHQKJhdocJdB11fZQoaAZoCWgPQwihoupXOqtuQJSGlFKUaBVNAwFoFkdAomJKo4uK43V9lChoBmgJaA9DCE2+2ebG92xAlIaUUpRoFU0CAWgWR0CiYw5p8F6idX2UKGgGaAloD0MIM8SxLq4UcECUhpRSlGgVTRsBaBZHQKJlfEUCaJB1fZQoaAZoCWgPQwh/h6JAHzlwQJSGlFKUaBVL/2gWR0CiZkj5sTFmdX2UKGgGaAloD0MIJzCd1m30cECUhpRSlGgVTQUBaBZHQKJnFbaAWi11fZQoaAZoCWgPQwjN5nEYjCJwQJSGlFKUaBVNIwFoFkdAomgBqXWvsHV9lChoBmgJaA9DCLSrkPKT1W1AlIaUUpRoFU1nAWgWR0CiaT0FB6a9dX2UKGgGaAloD0MIuw9AahO7RECUhpRSlGgVS9BoFkdAomnUc81XNnV9lChoBmgJaA9DCMnJxK3CHHFAlIaUUpRoFUv9aBZHQKJq0WxhUip1fZQoaAZoCWgPQwjGaYgqfDNuQJSGlFKUaBVNFAFoFkdAom4VdTo+wHV9lChoBmgJaA9DCAQBMnTsgA1AlIaUUpRoFUveaBZHQKJvA3kxREZ1fZQoaAZoCWgPQwh0CBwJ9GFwQJSGlFKUaBVNFAFoFkdAonA5ttQ9BHV9lChoBmgJaA9DCAdeLXfm9G1AlIaUUpRoFU0BAWgWR0CicVIFFDv3dX2UKGgGaAloD0MIylNW0/WybECUhpRSlGgVS/toFkdAonJrgflp5HV9lChoBmgJaA9DCNMUAU7vcjjAlIaUUpRoFUvqaBZHQKJzYxOclPd1fZQoaAZoCWgPQwg/Gk6ZG7dvQJSGlFKUaBVNFQFoFkdAonQzXz19OXV9lChoBmgJaA9DCOKt828XW3FAlIaUUpRoFU0FAWgWR0CidPn8KohqdX2UKGgGaAloD0MIAqCKG7cNb0CUhpRSlGgVTRQBaBZHQKJ3anQY1pF1fZQoaAZoCWgPQwgcsRafAoJtQJSGlFKUaBVNIwFoFkdAonhUwBYFJXV9lChoBmgJaA9DCCKJXkaxcmxAlIaUUpRoFUv/aBZHQKJ5SYu01Il1fZQoaAZoCWgPQwigpSvYRmpdQJSGlFKUaBVN6ANoFkdAon8zAvcrRXV9lChoBmgJaA9DCNKm6h5Zbm5AlIaUUpRoFU0KAWgWR0CigFjL8rI6dX2UKGgGaAloD0MIeQPMfAc8b0CUhpRSlGgVTQcBaBZHQKKDQKl54W11fZQoaAZoCWgPQwid9/9xgslwQJSGlFKUaBVNAwFoFkdAooQJxWDHwXV9lChoBmgJaA9DCJ+qQgOxIHBAlIaUUpRoFU0CAWgWR0CihNQXqJMydX2UKGgGaAloD0MIXtkFg2u6bUCUhpRSlGgVTQgBaBZHQKKFlKHO8kF1fZQoaAZoCWgPQwh/3795cWFaQJSGlFKUaBVN6ANoFkdAooq3GACnxnV9lChoBmgJaA9DCOW5vg8HHG5AlIaUUpRoFU0BAWgWR0CijkKRlpXZdX2UKGgGaAloD0MIxOxl22nfbkCUhpRSlGgVTSsBaBZHQKKPn4FA3UB1fZQoaAZoCWgPQwgCYadYtRtvQJSGlFKUaBVNBwFoFkdAopDQv114gXV9lChoBmgJaA9DCKzkY3eBj29AlIaUUpRoFU0UAWgWR0Cikb44p+c6dX2UKGgGaAloD0MI0SSxpFyLbUCUhpRSlGgVTSwBaBZHQKKSs5GSZBt1fZQoaAZoCWgPQwj83xEVqvhsQJSGlFKUaBVNDAFoFkdAopOGAuqWC3V9lChoBmgJaA9DCCo7/aCutG9AlIaUUpRoFU0VAWgWR0CilGLmp2lmdX2UKGgGaAloD0MIWoKMgApHcECUhpRSlGgVTSUBaBZHQKKVStsenyd1fZQoaAZoCWgPQwj7ljldlthuQJSGlFKUaBVNJQFoFkdAopfFEd/8VHV9lChoBmgJaA9DCAe0dAXbJ25AlIaUUpRoFU0rAWgWR0CimKzbnHNpdX2UKGgGaAloD0MI0UAsmzlncECUhpRSlGgVTQUBaBZHQKKZcanaWX11fZQoaAZoCWgPQwh+xoUDIeBZQJSGlFKUaBVN6ANoFkdAop4piw0O3HV9lChoBmgJaA9DCKoqNBBLeW1AlIaUUpRoFU0GAWgWR0CioJ0BwMpgdX2UKGgGaAloD0MId0zdld1uYECUhpRSlGgVTegDaBZHQKKkTLAYYSB1fZQoaAZoCWgPQwiV1t8SgGBvQJSGlFKUaBVNCgFoFkdAoqUrCk43m3V9lChoBmgJaA9DCGu3XWiuXz9AlIaUUpRoFUvSaBZHQKKmCkB0ZFZ1fZQoaAZoCWgPQwgEyTuHMtQ+QJSGlFKUaBVL6GgWR0CipvPs7dSEdX2UKGgGaAloD0MI63O1FbvDcECUhpRSlGgVTSEBaBZHQKKoMP3i7051fZQoaAZoCWgPQwgaprbUgQxwQJSGlFKUaBVNJwFoFkdAoqveMju8b3V9lChoBmgJaA9DCCqRRC+jqm9AlIaUUpRoFU0fAWgWR0CirTOP/7zkdX2UKGgGaAloD0MIGedvQiFWMMCUhpRSlGgVS9xoFkdAoq4mE4//vXV9lChoBmgJaA9DCEj8ijUchHBAlIaUUpRoFU0gAWgWR0Cir0N+CsfadX2UKGgGaAloD0MId9oaEYycbECUhpRSlGgVTfwBaBZHQKKxGjvd/KB1fZQoaAZoCWgPQwjfUs4Xe4luQJSGlFKUaBVNBwFoFkdAorHtaQmu1XV9lChoBmgJaA9DCGptGtvr22xAlIaUUpRoFU0XAWgWR0CitGl1SwW4dX2UKGgGaAloD0MIp3fxftz5bkCUhpRSlGgVTRcBaBZHQKK1SrdWQwN1fZQoaAZoCWgPQwiRDaSLTU8+QJSGlFKUaBVNiwFoFkdAora2Ml1KXnV9lChoBmgJaA9DCHtntFVJfG9AlIaUUpRoFUv8aBZHQKK3dEQXhwV1fZQoaAZoCWgPQwhLWYY41mEzQJSGlFKUaBVL4GgWR0CiuB6aLGaQdX2UKGgGaAloD0MIlE+PbZk9b0CUhpRSlGgVTScBaBZHQKK5BlHz6Jt1fZQoaAZoCWgPQwhIF5tWCmtcQJSGlFKUaBVN6ANoFkdAor7j9hqj8HV9lChoBmgJaA9DCPNXyFwZR29AlIaUUpRoFU0CAWgWR0Civ7MiSq2jdX2UKGgGaAloD0MIH0q05PHDXUCUhpRSlGgVTegDaBZHQKLEbGmUGFB1fZQoaAZoCWgPQwiiYMYUrCxuQJSGlFKUaBVNAAFoFkdAosV6UaAFxHV9lChoBmgJaA9DCEqWk1D6AgrAlIaUUpRoFUvkaBZHQKLIs9L6DXh1fZQoaAZoCWgPQwiojep0IL88QJSGlFKUaBVL32gWR0CiybSy2QXAdX2UKGgGaAloD0MIJeZZSatkbECUhpRSlGgVTREBaBZHQKLK/GZuyeJ1fZQoaAZoCWgPQwiBJVex+Fk4QJSGlFKUaBVL52gWR0CizAQGW2PUdX2UKGgGaAloD0MIE/OspBVjbkCUhpRSlGgVTWYBaBZHQKLNmDaoMrp1fZQoaAZoCWgPQwgyOiAJ++ppQJSGlFKUaBVNQwFoFkdAos6iEL6UJXV9lChoBmgJaA9DCPK20mszlG5AlIaUUpRoFU05AWgWR0Ciz6ZqdpZfdX2UKGgGaAloD0MIXOhKBCqmcECUhpRSlGgVTTwBaBZHQKLSQa/ATIx1fZQoaAZoCWgPQwgAGqVL/9JtQJSGlFKUaBVNRwFoFkdAotNSH2ys0nV9lChoBmgJaA9DCB10CYfeU29AlIaUUpRoFU0GAWgWR0Ci1CA3DNyHdX2UKGgGaAloD0MIroBCPX1rbUCUhpRSlGgVTSsBaBZHQKLVDIPK+zt1fZQoaAZoCWgPQwh06spneUpsQJSGlFKUaBVNVwJoFkdAotcRQ79ycXV9lChoBmgJaA9DCDaQLjati3FAlIaUUpRoFU0YAWgWR0Ci1/AMc6vJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2445, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (216 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 195.19873086225624, "std_reward": 99.56005359803511, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-25T11:09:50.790191"}