Upload PPO LunarLander-v2 2e10 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-step2248-n_epochs9.zip +3 -0
- ppo-LunarLander-v2-step2248-n_epochs9/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-step2248-n_epochs9/data +95 -0
- ppo-LunarLander-v2-step2248-n_epochs9/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-step2248-n_epochs9/policy.pth +3 -0
- ppo-LunarLander-v2-step2248-n_epochs9/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-step2248-n_epochs9/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 275.88 +/- 14.86
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679249749564293483, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3mub2jNSw/dfhpPUQ56r414h++zcH5PQAAAAAAAAAAQK5APt//DT8qJy++If7Wvj5zpT2gvr69AAAAAAAAAABmSpq8XJcUumLyiDo+eAw19CS8u6B5obkAAIA/AACAP83fEr1SM8i7PT+uPHu0mjwVjxu931yCPQAAgD8AAIA/mn3CPdsKsD6bKP69dlS4vmVrrbyKpuK9AAAAAAAAAADN8K87bHOjPsEJoDwH4qy+vzs6PdQPm7wAAAAAAAAAAJoLGT43Xko/NrjxPWaq2L5Pm1M+Xg9KvAAAAAAAAAAApo2NPa5R77x8eKU9GTC3vReoKb4oF4e+AACAPwAAgD8g9EU+AWaFP1McpD4u/wG/PkOsPrHpKz4AAAAAAAAAAABe+LxtSlc+Bj1rPjKHiL77gjU+kFbWvQAAAAAAAAAA2sXsvaRzJT9uoPq8/03fvnQOJb6OlO49AAAAAAAAAACafkE9j/47uksfIrwTFD61RVBTO6v9qTQAAAAAAAAAAPofCb5D5fc+8QWFPpNfpr6rzYc9NocqPgAAAAAAAAAAzXkgPUrSsD9nQSM/FfiRvlXHubx/RcQ6AAAAAAAAAACadHk9v8kjPx5Xir0mmNG+fMtmPc7Sgr0AAAAAAAAAAHMzZ76u2Ec/5gs7PfmP6L6iToy+W2jIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZoaNsv7CckCUhpRSlIwBbJRL2owBdJRHQLLA6uivgWJ1fZQoaAZoCWgPQwg0L4fdt6dwQJSGlFKUaBVL92gWR0CywO3E/B3zdX2UKGgGaAloD0MISkT4FwFgckCUhpRSlGgVS9xoFkdAssDza/RE4XV9lChoBmgJaA9DCH2VfOzujHBAlIaUUpRoFUv8aBZHQLLA+jxkNF11fZQoaAZoCWgPQwjAWrVrwqhvQJSGlFKUaBVL32gWR0CywR+QhfShdX2UKGgGaAloD0MIx9eeWRJub0CUhpRSlGgVS+ZoFkdAssE1u0kWynV9lChoBmgJaA9DCOrqjsX2nnFAlIaUUpRoFUv4aBZHQLLBQuL74zt1fZQoaAZoCWgPQwhV+DO8WYRyQJSGlFKUaBVL/2gWR0CywVhsl9jPdX2UKGgGaAloD0MIXeDyWDM+cUCUhpRSlGgVS91oFkdAssFa07bL2nV9lChoBmgJaA9DCJQyqaHNIXBAlIaUUpRoFUvTaBZHQLLBXI8hcJN1fZQoaAZoCWgPQwjZ7Ej1XZZxQJSGlFKUaBVL3mgWR0CywWjJyQxOdX2UKGgGaAloD0MIBcJOsWoabkCUhpRSlGgVS+toFkdAssFvTPSlWXV9lChoBmgJaA9DCIguqG+Z13BAlIaUUpRoFUvQaBZHQLLBp3Lmp2l1fZQoaAZoCWgPQwgclgZ+VM5zQJSGlFKUaBVLy2gWR0CywcHoxHoYdX2UKGgGaAloD0MIwjOhSeK2ckCUhpRSlGgVS+NoFkdAssHGuzQeFXV9lChoBmgJaA9DCDp0et6NF3FAlIaUUpRoFUv4aBZHQLLBz6cy31B1fZQoaAZoCWgPQwhNhuP5DD5uQJSGlFKUaBVL3mgWR0CywhhZpztDdX2UKGgGaAloD0MIwtoYO+HUbUCUhpRSlGgVS+loFkdAssIuk0rK/3V9lChoBmgJaA9DCAeaz7lbH3BAlIaUUpRoFUvqaBZHQLLCNTNdJJ51fZQoaAZoCWgPQwgU0ETYMCRyQJSGlFKUaBVL/2gWR0Cywkd3jdYXdX2UKGgGaAloD0MIiUFg5ZCIcECUhpRSlGgVS8toFkdAssJG9+PRzHV9lChoBmgJaA9DCPW+8bWnEHJAlIaUUpRoFUv0aBZHQLLCacvM8ox1fZQoaAZoCWgPQwhF8L+VbJdwQJSGlFKUaBVLzWgWR0Cywm33Dej3dX2UKGgGaAloD0MIDFnd6vnZckCUhpRSlGgVS9VoFkdAssJ7c2zfJnV9lChoBmgJaA9DCKmFksmpSnJAlIaUUpRoFUveaBZHQLLCiYCyQgd1fZQoaAZoCWgPQwjB5hw8U6hwQJSGlFKUaBVNBwFoFkdAssKm5hBqsXV9lChoBmgJaA9DCIPBNXf04XJAlIaUUpRoFUvraBZHQLLCqxsEaEV1fZQoaAZoCWgPQwgqOLwgIt5xQJSGlFKUaBVL5mgWR0Cyww+s1baAdX2UKGgGaAloD0MI963WiUu0cUCUhpRSlGgVS/1oFkdAssMRKlHjInV9lChoBmgJaA9DCMzPDU3Zw25AlIaUUpRoFUvkaBZHQLLDF8Z1mrd1fZQoaAZoCWgPQwjGhm72B/txQJSGlFKUaBVNMgFoFkdAssMdYOlO5HV9lChoBmgJaA9DCFNCsKqem3BAlIaUUpRoFU0PAWgWR0Cyw0QVO9FndX2UKGgGaAloD0MI7BLVWwNRcECUhpRSlGgVS+RoFkdAsshErUb1iHV9lChoBmgJaA9DCGMraFoik3FAlIaUUpRoFUvkaBZHQLLIiLowEhd1fZQoaAZoCWgPQwj+fjFbMm1yQJSGlFKUaBVL/mgWR0CyyKCwjdHldX2UKGgGaAloD0MILJs5JLWscUCUhpRSlGgVS9doFkdAssjhDLKV6nV9lChoBmgJaA9DCMCSq1g8kHFAlIaUUpRoFU0IAWgWR0CyyOO6d1+zdX2UKGgGaAloD0MI7WRwlPyLcECUhpRSlGgVS+5oFkdAssjjrC3w1HV9lChoBmgJaA9DCKz9ne1RUHNAlIaUUpRoFUvkaBZHQLLI6Ls8gZF1fZQoaAZoCWgPQwhZwARunQdzQJSGlFKUaBVNJAFoFkdAsskDiGWUr3V9lChoBmgJaA9DCPkSKjg8gHFAlIaUUpRoFUvZaBZHQLLJDqptJnR1fZQoaAZoCWgPQwhXzt4ZbRdzQJSGlFKUaBVL5WgWR0CyySt/jKgadX2UKGgGaAloD0MIUYaqmMrWcECUhpRSlGgVTRgBaBZHQLLJOMTviLl1fZQoaAZoCWgPQwho6+Bgb2pwQJSGlFKUaBVL12gWR0CyyZ5fx+a0dX2UKGgGaAloD0MIXhJnRRQtc0CUhpRSlGgVS+FoFkdAssm7tMPBi3V9lChoBmgJaA9DCOCD1y6tAXNAlIaUUpRoFUvzaBZHQLLJ0OKwY+B1fZQoaAZoCWgPQwgogGJkyQVxQJSGlFKUaBVL9GgWR0CyydXOSntOdX2UKGgGaAloD0MIqU2c3G+8cUCUhpRSlGgVS9VoFkdAssnjyy2QXHV9lChoBmgJaA9DCM8Qjll2z3FAlIaUUpRoFUveaBZHQLLKH/Ho5gh1fZQoaAZoCWgPQwiqRq8GKCxyQJSGlFKUaBVL0GgWR0CyykPb9If9dX2UKGgGaAloD0MIUYNpGH64cUCUhpRSlGgVS+doFkdAssqMMAmzB3V9lChoBmgJaA9DCBDLZg7JPXNAlIaUUpRoFUvYaBZHQLLKrefqX4V1fZQoaAZoCWgPQwgq5iDoaHlxQJSGlFKUaBVL3GgWR0CyyrL127nQdX2UKGgGaAloD0MIIT1FDlEKcUCUhpRSlGgVS/poFkdAssr8SwnpjnV9lChoBmgJaA9DCCSdgZGXx3FAlIaUUpRoFUvlaBZHQLLK/wOe8PF1fZQoaAZoCWgPQwgWGLK6FUtyQJSGlFKUaBVL5GgWR0Cyyy9oWYWtdX2UKGgGaAloD0MIvmiPF9IvckCUhpRSlGgVTRIBaBZHQLLLMgOBlMB1fZQoaAZoCWgPQwhp/pjW5jhwQJSGlFKUaBVL8WgWR0Cyyz1ejVQRdX2UKGgGaAloD0MIrBqEuV09ckCUhpRSlGgVS/VoFkdAsswGchC+lHV9lChoBmgJaA9DCGFPO/y1YG9AlIaUUpRoFUvuaBZHQLLMEq94/u91fZQoaAZoCWgPQwifWKfKN89wQJSGlFKUaBVL22gWR0CyzECeyzHCdX2UKGgGaAloD0MIoyO5/AfqbkCUhpRSlGgVTQUBaBZHQLLMZw+t8u11fZQoaAZoCWgPQwiQozmysoNxQJSGlFKUaBVNIwFoFkdAssxnGtITXnV9lChoBmgJaA9DCGglrfjGaHRAlIaUUpRoFUvlaBZHQLLMi3azu4R1fZQoaAZoCWgPQwgNcEG27PhxQJSGlFKUaBVNMAFoFkdAsszDW3BpH3V9lChoBmgJaA9DCAdBR6uaO3BAlIaUUpRoFUvPaBZHQLLMyALy+Yd1fZQoaAZoCWgPQwiKdap8z7lyQJSGlFKUaBVL4GgWR0CyzM2Mn7YTdX2UKGgGaAloD0MI8icqG9YOcUCUhpRSlGgVS+FoFkdAsszmKpDNQnV9lChoBmgJaA9DCDCfrBguUm9AlIaUUpRoFUvaaBZHQLLNB+rU9ZB1fZQoaAZoCWgPQwh5rBkZ5I5zQJSGlFKUaBVL+GgWR0CyzTJCjUNKdX2UKGgGaAloD0MIBi/6CtLNcUCUhpRSlGgVS/xoFkdAss1ee2/i53V9lChoBmgJaA9DCBEBh1CleHBAlIaUUpRoFU0KAWgWR0CyzXPSlWOqdX2UKGgGaAloD0MIVI80uG08cECUhpRSlGgVTQcBaBZHQLLNeD+irT91fZQoaAZoCWgPQwjy64fY4AtzQJSGlFKUaBVL4mgWR0CyzbUL2HtXdX2UKGgGaAloD0MIvRk1X6XYcUCUhpRSlGgVS+RoFkdAss2/qPfbbnV9lChoBmgJaA9DCDquRnbl6HFAlIaUUpRoFUvJaBZHQLLNwwZflZJ1fZQoaAZoCWgPQwiTqYJRSatyQJSGlFKUaBVL4WgWR0Cyzemo3rD7dX2UKGgGaAloD0MIg8E1dzRRcUCUhpRSlGgVS8BoFkdAss3tyksSTXV9lChoBmgJaA9DCNcXCW05HXBAlIaUUpRoFUviaBZHQLLOBB1cMVl1fZQoaAZoCWgPQwiwAny3+UxvQJSGlFKUaBVL1GgWR0CyzhgTyrggdX2UKGgGaAloD0MIw5ygTY6LcUCUhpRSlGgVTQoBaBZHQLLOFzrNW2h1fZQoaAZoCWgPQwj/snvy8CJyQJSGlFKUaBVLyWgWR0Cyzh9WZJCjdX2UKGgGaAloD0MIMnTsoBK/ckCUhpRSlGgVS+toFkdAss40IRh+fHV9lChoBmgJaA9DCHzzGyZa5HBAlIaUUpRoFUvTaBZHQLLOUGmUGFB1fZQoaAZoCWgPQwgFFsCUAWZyQJSGlFKUaBVL/WgWR0Cyzr/egte2dX2UKGgGaAloD0MIQ/8EFyt7b0CUhpRSlGgVS+doFkdAss7IwztTk3V9lChoBmgJaA9DCAcI5uixUXJAlIaUUpRoFUveaBZHQLLOzyI55qx1fZQoaAZoCWgPQwh7hQX3AwJwQJSGlFKUaBVL8WgWR0CyzvQpjMFEdX2UKGgGaAloD0MIa9WuCelkcECUhpRSlGgVS+toFkdAss9B6C17Y3V9lChoBmgJaA9DCNnPYimSzXBAlIaUUpRoFUv2aBZHQLLPTUcn3L51fZQoaAZoCWgPQwhAo3Tp3x9yQJSGlFKUaBVL4mgWR0Cyz2T3M6ikdX2UKGgGaAloD0MISriQRzBjcUCUhpRSlGgVS+hoFkdAss9sCcPOIXV9lChoBmgJaA9DCOkMjLysq29AlIaUUpRoFUvmaBZHQLLPgpzLfUF1fZQoaAZoCWgPQwi4yagyDJlxQJSGlFKUaBVNFgFoFkdAss+RLoOhCnV9lChoBmgJaA9DCNNQo5Ckm3NAlIaUUpRoFUvfaBZHQLLPlg8bJfZ1fZQoaAZoCWgPQwiRRgVOtgJwQJSGlFKUaBVL72gWR0Cyz6TyauwHdX2UKGgGaAloD0MISWdg5CWhcUCUhpRSlGgVS/VoFkdAss+uvkili3V9lChoBmgJaA9DCJgwmpXt1nFAlIaUUpRoFUvTaBZHQLLPtpmmLtN1fZQoaAZoCWgPQwgmAP+UahxyQJSGlFKUaBVL82gWR0Cyz8aPOpsHdX2UKGgGaAloD0MIb/HwngNiUECUhpRSlGgVS71oFkdAss/6qfe1r3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMhqxCEGAkMzkqY1wb3EBsJSf+z6OLh2+M/7v1isUFB2gszZV2jvTxMD9YQMzqtRkPNfhV6MlMaPWnQW4tJpYsSDG96/cqZRJPkWsNYbH3d/NAPKUSZapZpUMXJvx90Gl0I3Fwmd2BgUSsTKQRfg/Kk+JF5xKW//4Lyjn6F73V3lgoFX0Qzf9bF+1AEav5knUIyXZ3zGswPNVzvYC1Fgg6CGFQxXF8V3ulqNTHBb+pvSSVF1CNIf8oRapfQ40NeqMnEss8GF2vsZ9GCiSlXP55Zkadct4MIi1V78r6pK95Z67fehi8tsuamV5ZJuqBBM6CLixICi4bG+nDcF2kmUOrBc5c74ol0iv9ASmIChiy+xVfOPAW1rYGd67zWzl3rqgjIe263BomE9MOtqEni5tRXIbJ9kXq6bpJhUOGuGX97HFNfh5ClfzLRIia7z+Z3ojl8XzgQlJwX7t0AQ+H9q0oNnUZ5FBg49234ohDQAnGiydo27rs6Q98G/qDUmZ3fIlJrctqKtMVmbojIAT93KcgWNemiY+961OIOJUdxbsafKGmb5V92mg2rsCjLhJK2mskm9lFFL4iU47HC/aVObVcFzlvUReZXi87OxENmXpPgcCisztg7vY4ms1g3efJvtuPol9bjPkIgx+Mk08294RlWbkucsLFBjNoa95pEwofQ8ViiGc8IUDcxrqsGlduArNRt0KSTUGlzjIC5gXpcvqG+W+AQABH4aysNunRT5yqI8x/t2nAe2Os6arBIG0lpYRZzjvUd8YGU8/BY8y6ttYWdOoAsHO3VTxEEmgS7B9mKaMhnpFjtd5wt5aTs2pXRMG4/vbsPYEi73JSvyyUDGQFThMMbvz8XGk7bP08sSa7EuM69YRKmirNIDCufGhSgtrk8s0nkWhgg6YmJ69eFNCJhYnOG5x1SuvJhxseemxvXMOC48e83cdpg8qDw+dts+cgdEXbGpl6h80iI4dHrHkTRij7q/LVNmjGL0YCt5Xo/J9HdjBstbD9sXJIrr62LLqzGm+JgBWR8JOUZ0aaClBcqKaEj0ag2PBMB4eP3NCimKadkAEzDbW013+0D1y7ytScU+bhq1HkJuUwvat5+jI1svZqSdrVjWQMtKRFmIh3zM1TAWJ7gSRN+j81AWQS07cqLef+QoayZi1kuXAJ60ss+j/uqTZgVlADWL9r9tLGm+9yMQAlBfEf+xArEIF02sVO0KgEkd+m3TFQ83LKhaJk74wRhYiNelvdIZe8Skz4fMfMfSyWaCiWR5y8mMqH8F2vY40sk3ScQPHf5v6x0s3Q/fO5RkNRQyEbkxuEuqhC/t4lYmKaMSEcGqbb3h7ZLQsycCTMzQdZmmy8Bwnb3/51TL4XTz+q24vY8VwDOuG4Lo1K9Q6wpP93Tucd1u95yvTDPPPGx6f23VQVDs7f1sOLRCCvlHuuRVXFwMe3i3edJVOKRfXnFvYEufjKY+3AZOepJtIp1AKMmeW3vJbY0JQVo2uANQakGxwb3c+vOCbPc08pHIRZi/a9EFmWcn3gQkZlyop1LTIgeAJnXsJ7N+G50xjfWyNqkq8gTOnXGEH0CiuHjWg6neJMwZKdqLc2/KkOr1YEGx9HsBauo3q/nRyDSp+n1wiXD3GesdI1w5futAJ65wvPjBch/0I5DHwRILoXVZPDVsYWzjjzBo+jIv73/qY9Z6dgbYiLU0F31fhaKCBJomFaQ6WCzQlyQOxT1FBwEdC0pxMygy2YMdZzo/ySRWJpn4bB94xVyO+68VLTdheeVNpMiwBmiwV6zac1D0LhftVVCX4ns+JoiSzIeY5UBChtAPdvmnzvl1BTghkCRcpO7FT0suBysLZAjjI6yOtd60sxyC4d7bo0N6z4PpzkgnfSJ28gh3dnJL/qQQ3HtEoQleJ7H9WoWzvAivWwZbRow61MuS/ZIgeQ/ruSEVERSzOpXxnLkPr9eA1hO/dBQL9KMcBmd1Gkrq7Ajs5sIAcNsQD5uuZVNmQLMl8/sGSu40gUuUqJvj3Aw3MJvHPUxcEMY6nb6K96Rc+vTSu+ZRKnsiTvgRNKVw+qo0CQz4p0+gozvuShTrB8ZNSCWlWlJ7gVTy+jVrfV5nVPvkGuhw4g5WDdtmA285wp3hrzhnKjm5AkXD1zNEwCZh2ZKIEjWUvPreLnhEwjY3kuNAoI/Ac/drBqA5IZd20HHGgeUrLa7XLZC/Pv33tNDbdo/C0yxoZ3WA4eRA4lf00oghmKDwjWCA2vLhnA32eYCVwNouW7ebFVpXCgSfLDbZUuQGw3inzyHZQCfi09o0lBJHg9a4VHOogAjV7KfTOZWuoofjYIH60al+cUIcCj9T3EWOyZDJIUj/qMioA+YESRgTkUN26QYsUQSi0Wvk5QV15mOW7hKELNfya4n9agwwbK4Ak5rcQ+Pmka0CbPTe5qLwJ/LdMLIJYR5aAK/n4pIPgoMT5C6q1clwHuiHC5mmEcRB5LBxqJ6279F201GFN05xvAPatcLc4ABKWBouTAn3tmzLWwf2Vd8GINtAsueVpS3vE6s6dOJHYbjrMTQ79+L65Jy44KP+t0TS9z9gnDBClJF6ZQvyUAz3oxtFDJEe3ZQrNPaQe4XhybR8ZbGZBe1vhns6udmUu8arD0uXKYm16Rjly3afERz8bK2LK8d218c2JbucjUH/s/U7Kqs9BjjgjZPj+DG2R9jghbXC/yKutIsgDKKERLOtz8G8CvdiKd+ugOygKq91J00z8SAMMi1afT8xEXSs+1zvsiU0PpVoAgFWeFgMpj8RmA3eAEc5RRaQxM4QHDmckrb6foKTZZ5i7UOOaFuEH+wOkT9lKiIqUihYfpSEDLEC5/zWdpIbl7jzgArszAAmTPExFBUtrC+ZPrDJGcISU9lUDydRJIHs59cL7aSkpTwNuI1VucG42Grmd4x4cFtK/7GBqh3FaOMlv0LthSZ5i7sgrPEJB10pEyrQEE1jBmuGc2UyFbltF3NgUQqB94tWSqv4lOv0Uf9OB1LR8gO0j1yORuD8KR8nPeB+dcYYFvfwhc7wKjKCF+cRR7eM7OUE63iebtDD6tsnqp2D7lcQkx0Pkfc6IVXP3rUe79+JWIIR5gmOhhdPI3yyOPxkSIAI5aI298qy9K98g1odSPmUK273drVynb8oX+AgP4iFAAX+lV9TbEUqUzmz3PN0YwIPFeptlqqF/yvYN8RVDwnIiwSHj86TA2fQxDUgkMYTwvRMLnXm3y9WG8p5YG4SJ/g2WRWKgWZup4zYOGdeozFRpNYsppTPb5kd9CrLN6T6EPGNfABIjqGOda8bGgEKWoXcQsKgqNj51dKRamPvi5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000360, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679255575957098046, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNZnL1yLBU+07UkPuRNZb4co4A9Rn0NvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00035999999999991594, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXk2espqacECUhpRSlIwBbJRL2owBdJRHQKSHqLw4KhN1fZQoaAZoCWgPQwjWkLjHEidzQJSGlFKUaBVL6GgWR0CkiEHoxHoYdX2UKGgGaAloD0MIIcms3mFmc0CUhpRSlGgVS9RoFkdApIjTOZ9d/3V9lChoBmgJaA9DCDJ2wkswknJAlIaUUpRoFUvtaBZHQKSJfWEsasJ1fZQoaAZoCWgPQwhLIZBLnF9vQJSGlFKUaBVL6GgWR0CkiiE+HJtBdX2UKGgGaAloD0MImKWdmktockCUhpRSlGgVS89oFkdApIqvsE7nxXV9lChoBmgJaA9DCED6Jk0DaHFAlIaUUpRoFUv5aBZHQKSOWGFi8Wd1fZQoaAZoCWgPQwgQWDm0SJxxQJSGlFKUaBVL32gWR0Ckju2dEsredX2UKGgGaAloD0MIQkC+hErAcECUhpRSlGgVS+JoFkdApI+J0nw5N3V9lChoBmgJaA9DCGlTdY9stXFAlIaUUpRoFUvKaBZHQKSQFH5rP+p1fZQoaAZoCWgPQwjKxRhYx6dwQJSGlFKUaBVL12gWR0CkkKTf779AdX2UKGgGaAloD0MIVwbVBieSckCUhpRSlGgVS+hoFkdApJE/VI7NjnV9lChoBmgJaA9DCG76sx/p63JAlIaUUpRoFUvyaBZHQKSR3oPCl8B1fZQoaAZoCWgPQwiJX7GGixZyQJSGlFKUaBVL32gWR0CkknyksSTRdX2UKGgGaAloD0MIUFH1K13LcUCUhpRSlGgVS/hoFkdApJMoYP5HmXV9lChoBmgJaA9DCCtoWmJlk3FAlIaUUpRoFUv9aBZHQKST2AfdRBN1fZQoaAZoCWgPQwj3Hi45rl9zQJSGlFKUaBVL3mgWR0Ckl/K5byH3dX2UKGgGaAloD0MI7wBPWrjsDECUhpRSlGgVS5FoFkdApJh0hzNliHV9lChoBmgJaA9DCG7dzVPdcHJAlIaUUpRoFU0GAWgWR0CkmXkU9IPLdX2UKGgGaAloD0MI22ysxPxPckCUhpRSlGgVS/xoFkdApJpi9Iwud3V9lChoBmgJaA9DCLWK/tCMh3FAlIaUUpRoFUvfaBZHQKSbOHSF49p1fZQoaAZoCWgPQwjWdD3RtZhwQJSGlFKUaBVL5WgWR0CknAeSr5qNdX2UKGgGaAloD0MI7gT7r3NJdECUhpRSlGgVS/BoFkdApJz0zuWrwXV9lChoBmgJaA9DCPeOGhOik3FAlIaUUpRoFUvmaBZHQKSd4Vvddmh1fZQoaAZoCWgPQwgyWHGqNcZwQJSGlFKUaBVL5WgWR0CknsqZc9nsdX2UKGgGaAloD0MI5UUm4NcCTUCUhpRSlGgVS6poFkdApJ93Roh6jXV9lChoBmgJaA9DCMyzklb8Jm5AlIaUUpRoFUvQaBZHQKSgSj2SMcZ1fZQoaAZoCWgPQwg6zJcXIFJyQJSGlFKUaBVL62gWR0CkpOoyTINmdX2UKGgGaAloD0MIgO7LmS3DckCUhpRSlGgVS/BoFkdApKWqdjG1hXV9lChoBmgJaA9DCLcnSGx3xHBAlIaUUpRoFUviaBZHQKSmQ9zwMH91fZQoaAZoCWgPQwg3VffI5gtzQJSGlFKUaBVNAQFoFkdApKcB1RtP6HV9lChoBmgJaA9DCFCJ6xhXeHBAlIaUUpRoFUvuaBZHQKSnqmNR3vB1fZQoaAZoCWgPQwgqqKj61YVwQJSGlFKUaBVL2GgWR0CkqD8+iaiLdX2UKGgGaAloD0MIZ0P+mcFKbkCUhpRSlGgVS9VoFkdApKjUHnlny3V9lChoBmgJaA9DCH80nDI3WXFAlIaUUpRoFU0MAWgWR0CkqZ/l6qsEdX2UKGgGaAloD0MISP31CgusbkCUhpRSlGgVTUYBaBZHQKSqo8PFvQ51fZQoaAZoCWgPQwjSrGwf8kdxQJSGlFKUaBVL3mgWR0Ckrj78WKuTdX2UKGgGaAloD0MILsVVZV+tbUCUhpRSlGgVS9hoFkdApK7aQ1aW5nV9lChoBmgJaA9DCE+y1eUUvXJAlIaUUpRoFUvyaBZHQKSvehbnoxJ1fZQoaAZoCWgPQwifVWZK69NxQJSGlFKUaBVL+GgWR0CksBuARTS9dX2UKGgGaAloD0MIMQkX8ohVcUCUhpRSlGgVS89oFkdApLCsRHww03V9lChoBmgJaA9DCHBdMSO8gXJAlIaUUpRoFU0iAWgWR0CksYQ/gR9PdX2UKGgGaAloD0MIdlCJ6xi1RkCUhpRSlGgVS79oFkdApLIFLamGd3V9lChoBmgJaA9DCGFwzR39LXFAlIaUUpRoFUvWaBZHQKSymJ40Mw11fZQoaAZoCWgPQwiNX3glScNuQJSGlFKUaBVL0mgWR0Cksy7XxvvSdX2UKGgGaAloD0MIe7yQDg/pcECUhpRSlGgVS/RoFkdApLPo13t8eHV9lChoBmgJaA9DCM/3U+Ml1GZAlIaUUpRoFU3oA2gWR0CkvDTQu27WdX2UKGgGaAloD0MIvRqgNNSccUCUhpRSlGgVS99oFkdApL0CqMm4RXV9lChoBmgJaA9DCLDo1mt6P3JAlIaUUpRoFUvuaBZHQKS96Hnlnyx1fZQoaAZoCWgPQwhhU+dRcX1wQJSGlFKUaBVL1mgWR0Ckvtc5CF9KdX2UKGgGaAloD0MIe9egL/1XcECUhpRSlGgVS+xoFkdApL/WGIsRQXV9lChoBmgJaA9DCFiNJazNwnFAlIaUUpRoFUvYaBZHQKTAt1uBMBZ1fZQoaAZoCWgPQwhu2ozTkOpxQJSGlFKUaBVL6GgWR0CkxWmGM4tIdX2UKGgGaAloD0MILjpZaj2rcECUhpRSlGgVTWsBaBZHQKTGfLQHAyp1fZQoaAZoCWgPQwgHtd/aCZxhQJSGlFKUaBVN6ANoFkdApMpPiLl3hXV9lChoBmgJaA9DCKm+84sSfmRAlIaUUpRoFU3oA2gWR0Ck0NmOEM9bdX2UKGgGaAloD0MI6+HLRJETZECUhpRSlGgVTegDaBZHQKTUvILgGbF1fZQoaAZoCWgPQwjwvioXqvhtQJSGlFKUaBVN/AFoFkdApNaD4etCA3V9lChoBmgJaA9DCOyjU1c+7m1AlIaUUpRoFU3qAmgWR0Ck3WflQuVYdX2UKGgGaAloD0MI1NUdi+0wb0CUhpRSlGgVS99oFkdApN5AMz/IbXV9lChoBmgJaA9DCJLn+j4c125AlIaUUpRoFU2mAWgWR0Ck4Dc0UGmldX2UKGgGaAloD0MIxJPdzKiucECUhpRSlGgVTUMBaBZHQKThq4c3l0Z1fZQoaAZoCWgPQwgo1xTIbN1nQJSGlFKUaBVN6ANoFkdApOXQ2hqTKXV9lChoBmgJaA9DCCOHiJuTuXBAlIaUUpRoFU0eAWgWR0Ck6bW7nPmgdX2UKGgGaAloD0MISn1Z2ml6cUCUhpRSlGgVS95oFkdApOpTN2TxG3V9lChoBmgJaA9DCMl06PT8f3FAlIaUUpRoFUv2aBZHQKTq+pG4I8h1fZQoaAZoCWgPQwhu+rMfqfBxQJSGlFKUaBVL3mgWR0Ck648h1TzedX2UKGgGaAloD0MI51JcVbbVcUCUhpRSlGgVTQIBaBZHQKTsPmcvugJ1fZQoaAZoCWgPQwiC5J1DmS9tQJSGlFKUaBVL4WgWR0Ck7NcYht+DdX2UKGgGaAloD0MIN1FLcyvxcUCUhpRSlGgVS/RoFkdApO2ARNATqXV9lChoBmgJaA9DCCsv+Z989nBAlIaUUpRoFU0CAWgWR0Ck7i9WZJCjdX2UKGgGaAloD0MIsdtnlZm9cUCUhpRSlGgVS99oFkdApO7M+C9RJnV9lChoBmgJaA9DCELqdvbVM3FAlIaUUpRoFUvXaBZHQKTyWu14Pf91fZQoaAZoCWgPQwisPIGwEz9yQJSGlFKUaBVL4WgWR0Ck8vVJ+UhWdX2UKGgGaAloD0MIigESTaDUbUCUhpRSlGgVS9ZoFkdApPOFmWdEs3V9lChoBmgJaA9DCAlQU8tWiXJAlIaUUpRoFUv6aBZHQKT0M8aGYa51fZQoaAZoCWgPQwiaz7nbdd5wQJSGlFKUaBVL6WgWR0Ck9NHjIaLodX2UKGgGaAloD0MI9rcE4B/yb0CUhpRSlGgVS9toFkdApPVmetjkMnV9lChoBmgJaA9DCJ9VZkqrkXFAlIaUUpRoFUvoaBZHQKT2DVU+9rZ1fZQoaAZoCWgPQwgPCkrRytpwQJSGlFKUaBVL52gWR0Ck9qmVJL/TdX2UKGgGaAloD0MIT62+uuq3cUCUhpRSlGgVS+JoFkdApPdGrOqvNnV9lChoBmgJaA9DCL0ZNV8lLHFAlIaUUpRoFUvZaBZHQKT32o3rD651fZQoaAZoCWgPQwheK6G7pKRyQJSGlFKUaBVL/GgWR0Ck/NHCfpUxdX2UKGgGaAloD0MI78ouGFxvb0CUhpRSlGgVTXoBaBZHQKT+b+glF+d1fZQoaAZoCWgPQwh+U1ipoCFvQJSGlFKUaBVL/GgWR0Ck/4ODSPU8dX2UKGgGaAloD0MI8umxLQPdcUCUhpRSlGgVS+doFkdApQB5ccENfHV9lChoBmgJaA9DCAJk6NgBqXFAlIaUUpRoFUvZaBZHQKUBXGCI1tR1fZQoaAZoCWgPQwj8xAH0+3FvQJSGlFKUaBVL2WgWR0ClAj2XkYGddX2UKGgGaAloD0MImfG20qtbckCUhpRSlGgVTQEBaBZHQKUDRUsFt9B1fZQoaAZoCWgPQwiYvWw77fhwQJSGlFKUaBVL42gWR0ClBCSfthNNdX2UKGgGaAloD0MINV8lHzvrbUCUhpRSlGgVS/FoFkdApQTnnr6ciHV9lChoBmgJaA9DCAfsavLUfXFAlIaUUpRoFUvSaBZHQKUIfVxS5y51fZQoaAZoCWgPQwiIodXJGcxwQJSGlFKUaBVL6WgWR0ClCR4KhL5AdX2UKGgGaAloD0MISino9pJXcUCUhpRSlGgVTR0BaBZHQKUJ45fdAPd1fZQoaAZoCWgPQwh1rFJ65vVxQJSGlFKUaBVL7GgWR0ClCn/1xsEadX2UKGgGaAloD0MI7xr0pTfnckCUhpRSlGgVS+BoFkdApQskEzO5a3V9lChoBmgJaA9DCDSEY5b9enJAlIaUUpRoFU0JAWgWR0ClC+aZH/cWdX2UKGgGaAloD0MIqb7zi9KsckCUhpRSlGgVS/doFkdApQyTXWe6I3V9lChoBmgJaA9DCL+36c8+7HJAlIaUUpRoFUvlaBZHQKUNVZntfHB1fZQoaAZoCWgPQwhg5dAiWxZxQJSGlFKUaBVNCwFoFkdApQ4SxVyWA3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4005, "n_steps": 2248, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 9, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-step2248-n_epochs9.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:752fc89eec5ca7021e703a89a429e5ac543a4ee7aa41f8d7bd118fff60273c66
|
3 |
+
size 150285
|
ppo-LunarLander-v2-step2248-n_epochs9/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2-step2248-n_epochs9/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMhqxCEGAkMzkqY1wb3EBsJSf+z6OLh2+M/7v1isUFB2gszZV2jvTxMD9YQMzqtRkPNfhV6MlMaPWnQW4tJpYsSDG96/cqZRJPkWsNYbH3d/NAPKUSZapZpUMXJvx90Gl0I3Fwmd2BgUSsTKQRfg/Kk+JF5xKW//4Lyjn6F73V3lgoFX0Qzf9bF+1AEav5knUIyXZ3zGswPNVzvYC1Fgg6CGFQxXF8V3ulqNTHBb+pvSSVF1CNIf8oRapfQ40NeqMnEss8GF2vsZ9GCiSlXP55Zkadct4MIi1V78r6pK95Z67fehi8tsuamV5ZJuqBBM6CLixICi4bG+nDcF2kmUOrBc5c74ol0iv9ASmIChiy+xVfOPAW1rYGd67zWzl3rqgjIe263BomE9MOtqEni5tRXIbJ9kXq6bpJhUOGuGX97HFNfh5ClfzLRIia7z+Z3ojl8XzgQlJwX7t0AQ+H9q0oNnUZ5FBg49234ohDQAnGiydo27rs6Q98G/qDUmZ3fIlJrctqKtMVmbojIAT93KcgWNemiY+961OIOJUdxbsafKGmb5V92mg2rsCjLhJK2mskm9lFFL4iU47HC/aVObVcFzlvUReZXi87OxENmXpPgcCisztg7vY4ms1g3efJvtuPol9bjPkIgx+Mk08294RlWbkucsLFBjNoa95pEwofQ8ViiGc8IUDcxrqsGlduArNRt0KSTUGlzjIC5gXpcvqG+W+AQABH4aysNunRT5yqI8x/t2nAe2Os6arBIG0lpYRZzjvUd8YGU8/BY8y6ttYWdOoAsHO3VTxEEmgS7B9mKaMhnpFjtd5wt5aTs2pXRMG4/vbsPYEi73JSvyyUDGQFThMMbvz8XGk7bP08sSa7EuM69YRKmirNIDCufGhSgtrk8s0nkWhgg6YmJ69eFNCJhYnOG5x1SuvJhxseemxvXMOC48e83cdpg8qDw+dts+cgdEXbGpl6h80iI4dHrHkTRij7q/LVNmjGL0YCt5Xo/J9HdjBstbD9sXJIrr62LLqzGm+JgBWR8JOUZ0aaClBcqKaEj0ag2PBMB4eP3NCimKadkAEzDbW013+0D1y7ytScU+bhq1HkJuUwvat5+jI1svZqSdrVjWQMtKRFmIh3zM1TAWJ7gSRN+j81AWQS07cqLef+QoayZi1kuXAJ60ss+j/uqTZgVlADWL9r9tLGm+9yMQAlBfEf+xArEIF02sVO0KgEkd+m3TFQ83LKhaJk74wRhYiNelvdIZe8Skz4fMfMfSyWaCiWR5y8mMqH8F2vY40sk3ScQPHf5v6x0s3Q/fO5RkNRQyEbkxuEuqhC/t4lYmKaMSEcGqbb3h7ZLQsycCTMzQdZmmy8Bwnb3/51TL4XTz+q24vY8VwDOuG4Lo1K9Q6wpP93Tucd1u95yvTDPPPGx6f23VQVDs7f1sOLRCCvlHuuRVXFwMe3i3edJVOKRfXnFvYEufjKY+3AZOepJtIp1AKMmeW3vJbY0JQVo2uANQakGxwb3c+vOCbPc08pHIRZi/a9EFmWcn3gQkZlyop1LTIgeAJnXsJ7N+G50xjfWyNqkq8gTOnXGEH0CiuHjWg6neJMwZKdqLc2/KkOr1YEGx9HsBauo3q/nRyDSp+n1wiXD3GesdI1w5futAJ65wvPjBch/0I5DHwRILoXVZPDVsYWzjjzBo+jIv73/qY9Z6dgbYiLU0F31fhaKCBJomFaQ6WCzQlyQOxT1FBwEdC0pxMygy2YMdZzo/ySRWJpn4bB94xVyO+68VLTdheeVNpMiwBmiwV6zac1D0LhftVVCX4ns+JoiSzIeY5UBChtAPdvmnzvl1BTghkCRcpO7FT0suBysLZAjjI6yOtd60sxyC4d7bo0N6z4PpzkgnfSJ28gh3dnJL/qQQ3HtEoQleJ7H9WoWzvAivWwZbRow61MuS/ZIgeQ/ruSEVERSzOpXxnLkPr9eA1hO/dBQL9KMcBmd1Gkrq7Ajs5sIAcNsQD5uuZVNmQLMl8/sGSu40gUuUqJvj3Aw3MJvHPUxcEMY6nb6K96Rc+vTSu+ZRKnsiTvgRNKVw+qo0CQz4p0+gozvuShTrB8ZNSCWlWlJ7gVTy+jVrfV5nVPvkGuhw4g5WDdtmA285wp3hrzhnKjm5AkXD1zNEwCZh2ZKIEjWUvPreLnhEwjY3kuNAoI/Ac/drBqA5IZd20HHGgeUrLa7XLZC/Pv33tNDbdo/C0yxoZ3WA4eRA4lf00oghmKDwjWCA2vLhnA32eYCVwNouW7ebFVpXCgSfLDbZUuQGw3inzyHZQCfi09o0lBJHg9a4VHOogAjV7KfTOZWuoofjYIH60al+cUIcCj9T3EWOyZDJIUj/qMioA+YESRgTkUN26QYsUQSi0Wvk5QV15mOW7hKELNfya4n9agwwbK4Ak5rcQ+Pmka0CbPTe5qLwJ/LdMLIJYR5aAK/n4pIPgoMT5C6q1clwHuiHC5mmEcRB5LBxqJ6279F201GFN05xvAPatcLc4ABKWBouTAn3tmzLWwf2Vd8GINtAsueVpS3vE6s6dOJHYbjrMTQ79+L65Jy44KP+t0TS9z9gnDBClJF6ZQvyUAz3oxtFDJEe3ZQrNPaQe4XhybR8ZbGZBe1vhns6udmUu8arD0uXKYm16Rjly3afERz8bK2LK8d218c2JbucjUH/s/U7Kqs9BjjgjZPj+DG2R9jghbXC/yKutIsgDKKERLOtz8G8CvdiKd+ugOygKq91J00z8SAMMi1afT8xEXSs+1zvsiU0PpVoAgFWeFgMpj8RmA3eAEc5RRaQxM4QHDmckrb6foKTZZ5i7UOOaFuEH+wOkT9lKiIqUihYfpSEDLEC5/zWdpIbl7jzgArszAAmTPExFBUtrC+ZPrDJGcISU9lUDydRJIHs59cL7aSkpTwNuI1VucG42Grmd4x4cFtK/7GBqh3FaOMlv0LthSZ5i7sgrPEJB10pEyrQEE1jBmuGc2UyFbltF3NgUQqB94tWSqv4lOv0Uf9OB1LR8gO0j1yORuD8KR8nPeB+dcYYFvfwhc7wKjKCF+cRR7eM7OUE63iebtDD6tsnqp2D7lcQkx0Pkfc6IVXP3rUe79+JWIIR5gmOhhdPI3yyOPxkSIAI5aI298qy9K98g1odSPmUK273drVynb8oX+AgP4iFAAX+lV9TbEUqUzmz3PN0YwIPFeptlqqF/yvYN8RVDwnIiwSHj86TA2fQxDUgkMYTwvRMLnXm3y9WG8p5YG4SJ/g2WRWKgWZup4zYOGdeozFRpNYsppTPb5kd9CrLN6T6EPGNfABIjqGOda8bGgEKWoXcQsKgqNj51dKRamPvi5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": "RandomState(MT19937)"
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1000360,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679255575957098046,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNZnL1yLBU+07UkPuRNZb4co4A9Rn0NvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00035999999999991594,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXk2espqacECUhpRSlIwBbJRL2owBdJRHQKSHqLw4KhN1fZQoaAZoCWgPQwjWkLjHEidzQJSGlFKUaBVL6GgWR0CkiEHoxHoYdX2UKGgGaAloD0MIIcms3mFmc0CUhpRSlGgVS9RoFkdApIjTOZ9d/3V9lChoBmgJaA9DCDJ2wkswknJAlIaUUpRoFUvtaBZHQKSJfWEsasJ1fZQoaAZoCWgPQwhLIZBLnF9vQJSGlFKUaBVL6GgWR0CkiiE+HJtBdX2UKGgGaAloD0MImKWdmktockCUhpRSlGgVS89oFkdApIqvsE7nxXV9lChoBmgJaA9DCED6Jk0DaHFAlIaUUpRoFUv5aBZHQKSOWGFi8Wd1fZQoaAZoCWgPQwgQWDm0SJxxQJSGlFKUaBVL32gWR0Ckju2dEsredX2UKGgGaAloD0MIQkC+hErAcECUhpRSlGgVS+JoFkdApI+J0nw5N3V9lChoBmgJaA9DCGlTdY9stXFAlIaUUpRoFUvKaBZHQKSQFH5rP+p1fZQoaAZoCWgPQwjKxRhYx6dwQJSGlFKUaBVL12gWR0CkkKTf779AdX2UKGgGaAloD0MIVwbVBieSckCUhpRSlGgVS+hoFkdApJE/VI7NjnV9lChoBmgJaA9DCG76sx/p63JAlIaUUpRoFUvyaBZHQKSR3oPCl8B1fZQoaAZoCWgPQwiJX7GGixZyQJSGlFKUaBVL32gWR0CkknyksSTRdX2UKGgGaAloD0MIUFH1K13LcUCUhpRSlGgVS/hoFkdApJMoYP5HmXV9lChoBmgJaA9DCCtoWmJlk3FAlIaUUpRoFUv9aBZHQKST2AfdRBN1fZQoaAZoCWgPQwj3Hi45rl9zQJSGlFKUaBVL3mgWR0Ckl/K5byH3dX2UKGgGaAloD0MI7wBPWrjsDECUhpRSlGgVS5FoFkdApJh0hzNliHV9lChoBmgJaA9DCG7dzVPdcHJAlIaUUpRoFU0GAWgWR0CkmXkU9IPLdX2UKGgGaAloD0MI22ysxPxPckCUhpRSlGgVS/xoFkdApJpi9Iwud3V9lChoBmgJaA9DCLWK/tCMh3FAlIaUUpRoFUvfaBZHQKSbOHSF49p1fZQoaAZoCWgPQwjWdD3RtZhwQJSGlFKUaBVL5WgWR0CknAeSr5qNdX2UKGgGaAloD0MI7gT7r3NJdECUhpRSlGgVS/BoFkdApJz0zuWrwXV9lChoBmgJaA9DCPeOGhOik3FAlIaUUpRoFUvmaBZHQKSd4Vvddmh1fZQoaAZoCWgPQwgyWHGqNcZwQJSGlFKUaBVL5WgWR0CknsqZc9nsdX2UKGgGaAloD0MI5UUm4NcCTUCUhpRSlGgVS6poFkdApJ93Roh6jXV9lChoBmgJaA9DCMyzklb8Jm5AlIaUUpRoFUvQaBZHQKSgSj2SMcZ1fZQoaAZoCWgPQwg6zJcXIFJyQJSGlFKUaBVL62gWR0CkpOoyTINmdX2UKGgGaAloD0MIgO7LmS3DckCUhpRSlGgVS/BoFkdApKWqdjG1hXV9lChoBmgJaA9DCLcnSGx3xHBAlIaUUpRoFUviaBZHQKSmQ9zwMH91fZQoaAZoCWgPQwg3VffI5gtzQJSGlFKUaBVNAQFoFkdApKcB1RtP6HV9lChoBmgJaA9DCFCJ6xhXeHBAlIaUUpRoFUvuaBZHQKSnqmNR3vB1fZQoaAZoCWgPQwgqqKj61YVwQJSGlFKUaBVL2GgWR0CkqD8+iaiLdX2UKGgGaAloD0MIZ0P+mcFKbkCUhpRSlGgVS9VoFkdApKjUHnlny3V9lChoBmgJaA9DCH80nDI3WXFAlIaUUpRoFU0MAWgWR0CkqZ/l6qsEdX2UKGgGaAloD0MISP31CgusbkCUhpRSlGgVTUYBaBZHQKSqo8PFvQ51fZQoaAZoCWgPQwjSrGwf8kdxQJSGlFKUaBVL3mgWR0Ckrj78WKuTdX2UKGgGaAloD0MILsVVZV+tbUCUhpRSlGgVS9hoFkdApK7aQ1aW5nV9lChoBmgJaA9DCE+y1eUUvXJAlIaUUpRoFUvyaBZHQKSvehbnoxJ1fZQoaAZoCWgPQwifVWZK69NxQJSGlFKUaBVL+GgWR0CksBuARTS9dX2UKGgGaAloD0MIMQkX8ohVcUCUhpRSlGgVS89oFkdApLCsRHww03V9lChoBmgJaA9DCHBdMSO8gXJAlIaUUpRoFU0iAWgWR0CksYQ/gR9PdX2UKGgGaAloD0MIdlCJ6xi1RkCUhpRSlGgVS79oFkdApLIFLamGd3V9lChoBmgJaA9DCGFwzR39LXFAlIaUUpRoFUvWaBZHQKSymJ40Mw11fZQoaAZoCWgPQwiNX3glScNuQJSGlFKUaBVL0mgWR0Cksy7XxvvSdX2UKGgGaAloD0MIe7yQDg/pcECUhpRSlGgVS/RoFkdApLPo13t8eHV9lChoBmgJaA9DCM/3U+Ml1GZAlIaUUpRoFU3oA2gWR0CkvDTQu27WdX2UKGgGaAloD0MIvRqgNNSccUCUhpRSlGgVS99oFkdApL0CqMm4RXV9lChoBmgJaA9DCLDo1mt6P3JAlIaUUpRoFUvuaBZHQKS96Hnlnyx1fZQoaAZoCWgPQwhhU+dRcX1wQJSGlFKUaBVL1mgWR0Ckvtc5CF9KdX2UKGgGaAloD0MIe9egL/1XcECUhpRSlGgVS+xoFkdApL/WGIsRQXV9lChoBmgJaA9DCFiNJazNwnFAlIaUUpRoFUvYaBZHQKTAt1uBMBZ1fZQoaAZoCWgPQwhu2ozTkOpxQJSGlFKUaBVL6GgWR0CkxWmGM4tIdX2UKGgGaAloD0MILjpZaj2rcECUhpRSlGgVTWsBaBZHQKTGfLQHAyp1fZQoaAZoCWgPQwgHtd/aCZxhQJSGlFKUaBVN6ANoFkdApMpPiLl3hXV9lChoBmgJaA9DCKm+84sSfmRAlIaUUpRoFU3oA2gWR0Ck0NmOEM9bdX2UKGgGaAloD0MI6+HLRJETZECUhpRSlGgVTegDaBZHQKTUvILgGbF1fZQoaAZoCWgPQwjwvioXqvhtQJSGlFKUaBVN/AFoFkdApNaD4etCA3V9lChoBmgJaA9DCOyjU1c+7m1AlIaUUpRoFU3qAmgWR0Ck3WflQuVYdX2UKGgGaAloD0MI1NUdi+0wb0CUhpRSlGgVS99oFkdApN5AMz/IbXV9lChoBmgJaA9DCJLn+j4c125AlIaUUpRoFU2mAWgWR0Ck4Dc0UGmldX2UKGgGaAloD0MIxJPdzKiucECUhpRSlGgVTUMBaBZHQKThq4c3l0Z1fZQoaAZoCWgPQwgo1xTIbN1nQJSGlFKUaBVN6ANoFkdApOXQ2hqTKXV9lChoBmgJaA9DCCOHiJuTuXBAlIaUUpRoFU0eAWgWR0Ck6bW7nPmgdX2UKGgGaAloD0MISn1Z2ml6cUCUhpRSlGgVS95oFkdApOpTN2TxG3V9lChoBmgJaA9DCMl06PT8f3FAlIaUUpRoFUv2aBZHQKTq+pG4I8h1fZQoaAZoCWgPQwhu+rMfqfBxQJSGlFKUaBVL3mgWR0Ck648h1TzedX2UKGgGaAloD0MI51JcVbbVcUCUhpRSlGgVTQIBaBZHQKTsPmcvugJ1fZQoaAZoCWgPQwiC5J1DmS9tQJSGlFKUaBVL4WgWR0Ck7NcYht+DdX2UKGgGaAloD0MIN1FLcyvxcUCUhpRSlGgVS/RoFkdApO2ARNATqXV9lChoBmgJaA9DCCsv+Z989nBAlIaUUpRoFU0CAWgWR0Ck7i9WZJCjdX2UKGgGaAloD0MIsdtnlZm9cUCUhpRSlGgVS99oFkdApO7M+C9RJnV9lChoBmgJaA9DCELqdvbVM3FAlIaUUpRoFUvXaBZHQKTyWu14Pf91fZQoaAZoCWgPQwisPIGwEz9yQJSGlFKUaBVL4WgWR0Ck8vVJ+UhWdX2UKGgGaAloD0MIigESTaDUbUCUhpRSlGgVS9ZoFkdApPOFmWdEs3V9lChoBmgJaA9DCAlQU8tWiXJAlIaUUpRoFUv6aBZHQKT0M8aGYa51fZQoaAZoCWgPQwiaz7nbdd5wQJSGlFKUaBVL6WgWR0Ck9NHjIaLodX2UKGgGaAloD0MI9rcE4B/yb0CUhpRSlGgVS9toFkdApPVmetjkMnV9lChoBmgJaA9DCJ9VZkqrkXFAlIaUUpRoFUvoaBZHQKT2DVU+9rZ1fZQoaAZoCWgPQwgPCkrRytpwQJSGlFKUaBVL52gWR0Ck9qmVJL/TdX2UKGgGaAloD0MIT62+uuq3cUCUhpRSlGgVS+JoFkdApPdGrOqvNnV9lChoBmgJaA9DCL0ZNV8lLHFAlIaUUpRoFUvZaBZHQKT32o3rD651fZQoaAZoCWgPQwheK6G7pKRyQJSGlFKUaBVL/GgWR0Ck/NHCfpUxdX2UKGgGaAloD0MI78ouGFxvb0CUhpRSlGgVTXoBaBZHQKT+b+glF+d1fZQoaAZoCWgPQwh+U1ipoCFvQJSGlFKUaBVL/GgWR0Ck/4ODSPU8dX2UKGgGaAloD0MI8umxLQPdcUCUhpRSlGgVS+doFkdApQB5ccENfHV9lChoBmgJaA9DCAJk6NgBqXFAlIaUUpRoFUvZaBZHQKUBXGCI1tR1fZQoaAZoCWgPQwj8xAH0+3FvQJSGlFKUaBVL2WgWR0ClAj2XkYGddX2UKGgGaAloD0MImfG20qtbckCUhpRSlGgVTQEBaBZHQKUDRUsFt9B1fZQoaAZoCWgPQwiYvWw77fhwQJSGlFKUaBVL42gWR0ClBCSfthNNdX2UKGgGaAloD0MINV8lHzvrbUCUhpRSlGgVS/FoFkdApQTnnr6ciHV9lChoBmgJaA9DCAfsavLUfXFAlIaUUpRoFUvSaBZHQKUIfVxS5y51fZQoaAZoCWgPQwiIodXJGcxwQJSGlFKUaBVL6WgWR0ClCR4KhL5AdX2UKGgGaAloD0MISino9pJXcUCUhpRSlGgVTR0BaBZHQKUJ45fdAPd1fZQoaAZoCWgPQwh1rFJ65vVxQJSGlFKUaBVL7GgWR0ClCn/1xsEadX2UKGgGaAloD0MI7xr0pTfnckCUhpRSlGgVS+BoFkdApQskEzO5a3V9lChoBmgJaA9DCDSEY5b9enJAlIaUUpRoFU0JAWgWR0ClC+aZH/cWdX2UKGgGaAloD0MIqb7zi9KsckCUhpRSlGgVS/doFkdApQyTXWe6I3V9lChoBmgJaA9DCL+36c8+7HJAlIaUUpRoFUvlaBZHQKUNVZntfHB1fZQoaAZoCWgPQwhg5dAiWxZxQJSGlFKUaBVNCwFoFkdApQ4SxVyWA3VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 4005,
|
80 |
+
"n_steps": 2248,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 9,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2-step2248-n_epochs9/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d2d655598e0bce034040709f6351367df5e98200067c5ba2d08a5402f797e06
|
3 |
+
size 87929
|
ppo-LunarLander-v2-step2248-n_epochs9/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:018cf21c46b8b94f9bec9c56be5f7d95b542ccbd68b0fa6d459838a87e959e41
|
3 |
+
size 43393
|
ppo-LunarLander-v2-step2248-n_epochs9/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-step2248-n_epochs9/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 275.87757762632003, "std_reward": 14.864634515836029, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T20:57:40.034816"}
|