emmuzoo commited on
Commit
bfadd57
·
1 Parent(s): 7b6ef79

Upload PPO LunarLander-v2 2e10 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 238.85 +/- 65.94
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 286.26 +/- 20.54
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc9693f790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc9693f820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc9693f8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc9693f940>", "_build": "<function ActorCriticPolicy._build at 0x7fbc9693f9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc9693fa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc9693faf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc9693fb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc9693fc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc9693fca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc9693fd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbc969400f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAADH/yFo4uTAuLXrz9SgiOQqtcN2aRkm3D95Fri9UTnGqg4Scl4qBbQU45q4kO0qD3pnNRDptHlXPK7nqpHqNKEth2B8XTGgS5i4T7x0c/ILR77hC/EWtj6pRU3vTVn2PNSypUkLMCDevkDTANlL16dO+3Ckb9jr6nGueFrwV5heNy2KCS6vOHsqvbW/Hhn0tgLzPuFjAO9e9wtQlF22Tb7Nk0ureWMGAUQmKJYYpVlAQVDDbGItvOMRUqaM8hgmt7VaY/86kMgaEn+EIapZA5QK261liZlI8b/THaIuLEpQdFcSZtub/V+BkgBofCKTNn4dAJ/4evF4tJ2EGeA1WXOB47QTKBtpgwHlsKwEJOWl8QjChvYooQIsoEeCe3v3IYZJUBUvmr3pvE8BFQs5QqAIaagFqUH9KMMTnvHYtlUVvklUMKFYvRHaS6Hcanq8/DjKFAtNfx71on33u7QRnSYiKB5DjEdHwJP2iyKNaRdtcAjdzTvLu3Xl/IQS8SUSbDjw3ov7FQj+I1jWPbzIJJsjNBPuK+MF5Qztfu/KPDrI8yjr4Rkh+I/8I7Oi7fHqQWmn494b7rI9+IQM+W1eNgppHm8Jd9ulYDvB4ROAHM/XKnSic0a/7+fRlQnINpTsND6PvIDF9X00y1wguKkfyc80ylT6auzFQi6eVtSf64gH792BCSukPIApOYYpiBkTtvyM+247rAuThDUcdJfTriuTZww4wlh4yVyOd9mb0kE+1GlgvCiYHV9OtwwjK1AN2KXRQAJ/MgIrqNNz60/LLgKAs8P5VDFAxuijhsVcDL0DtVjvqodkVN9x8Qg3a9FO08gaokKo4a8SCH+iU7EGObEHLo/OTuqMHiO+oYLCL/1oBPADayQHyz2KXM1vSnCo118Dnhl5hc056N8OJF7LLomPYULUayPFxMznRBtX18uUrJeyF3M0dMyDp1T/QX7aaX0cTx3eeagugkpesT6XDYaKp+D4GWdXXzShjGT7NYhv7xO8VQKwqTfwCHhX0gxVv1TLUPVBmWd07gyYH2V82DPsaggk0Tygya9s/wR4gYeGa76a1UsQUhQh7jvb46Y2Ip6tXLEo8erkw2wJ29GnkhSGqWtQC8xvwJf32On1NOyK5NR8LV5VII/rOd+mrmEckLheZOP/1dugxCuuSjGmuY7AROgV2ReNtLXFlftIbps55XGze4z8QnNpUQd2PG3HsqF82Ac9q7V5GVwm36muEzVrISv+L3/xyDPGn+DvhG2mzSFKDnGFaysP0h04bVNvPf1qdERl3QJ3kh9H9lvpf6dKDplgBj5RuV0eiDnzch5mIXTYwSVzP7jBwGUGnHjMi48OE+M5Z6vNHHeyxBRmYfsy93sbQROjI6UGkjQyxsSROLwZOrzRtaey1llZFidlbzAwqCtWOlURYNbTrOmrEYhCP7E5mHKbsYzywycj3rtOnPY3NUb7aSM+xAKacH40YtJEBcSEvrPS7/ZlGyRShBjNNL1Hznkv8FUidpjhmDfGIE56vb4a+jUJODwZ87rM0+3B3uItC98qCcWG+Drg2Is/ds4N7UlN7QuMzFI1H2mTpyS9Ws6r84klQo9WPnPw4rDRVrWcvtUSPosWBJuL0OcnvFtnLgfrWBgoahPJ+Y2K64oNw6dgN/g0tYEB2xLHZl/friXeFMenKn2iE4nB7tZvEyiVv03XTy1fsvkx9/H0NBfHm5nPRIGNr6xYhQ9Rvk6j6ZyCeWhZKTo8IvSKOJG0zG6teuUiSqXM0C/QxZhJcsenrmw2w2yg3/hEvY5uQNHH0BnvPELy0gSMuDXyxmwgnWk8VwkB7vbT2NjIgfsCv8UoO5NKBUf7Q2tMWvIo9L9MvDoyV3NXVsJIHrzVeMnk6gc/W8Eytx2XbV+FxysigXdCd24mm7zw4x9hNvizNlJzU0XOmpQ4HM+0WB8MsjOXHQ2xKqA7njC2Enxe1Fjdm8v5XAfii3b8oC9aaU0cvYRFIuVSJ2JOPxBf/WT+E00C7h2BIt+1kIHFAba0HsjTzeibjutuUo2rhfYTARtiGCyKvxCdkd3Lqq/8LaFujRPttQgmFV1szNvbf84r+I0mAd/thAVxfrdOokkTsM7RisaEer7ypjuGvW2E9HpqM6YLedNKxarvbenje0G5aF5ayLJFZ5CrG69FOx8sSYL/923Sb4dh24JwjeKbadz7ZCloV0FDZ+Gf8WBlFHxqKKtelejeZfshrE4EG1cYx868stSiavPflrscvdabrQ4XzGIDG/Cg3IXWq0s84jf51VSbc8638BPHoaKahz/rDEkBV81BzLyrVPSUrXHkIyfcBindsVWED1Wz3Dsk/7H/jYegnGxGK02XqyzcKp92HeJ2XKR9osYklVLA8EnNbcZDeVXmVgsPgG+8n9eCzOtRiebMOgHJiY+1iJkxIb3T06yIYbGV75NZqTW/znnwoeFnkN4jKujMuO0Jj+FHyhwAVXrhC41LXmX/gevB0FqUkWgKoP2+TeImQIkPYNe/8ClfTouaBL5atdCfniMio1w61XjCGJxl01Mw9YDp6G0ra18lpFPyNej5C9dTrMD82wsV0gwJDAZcKdnWdKcgMMN/80IcMiXZY/f0GSR7f49pl3EcftnbvM9aM5wshDq+Sb1B8sT9hkT3WRXfg1Ibqj08uf9BKvHL+DyqGoDU2jrYIqVDucnZw9p1CWD5IcvkykIA9tn6GPSiBWvfTVR9hNThGriT/zcFSWM3qi4RyVfGWr+ghzlwBsHkJaVsFSVRDwEm/hnM0txO8fJ63oVRkDbw68+HFK+KtjP3BlXnluszWXQakaEG0L4H9jaRboRXfc6EYb1m7L9devVth6ujgMcBQcDQuQvO5Quq3wV+UnrR5JiB3U8cQC0K/jUtk/uQd2JrnkOqpVulxkNVrsWCbjZPX/2JVc8oMnjyjhfZquNE7N+XzYb01Isp10//zaB9ukGPaGOQ+x28Zj7jvTZQTYLOQIA9Mg7KlvMUcYshBtoM8+SWiioy1ipjffIQoN6UPRl8DaNodAmXoXORQXEnh/g4E4gN6R7EZukK51lpDWPdTmA4y6uAGtLm1ZLABPZVH/1zjyui24tBpxha0kAfm+o4EM5C1fTYJpatgzG/gwkLoAwKXnHRfl2iHYJXPlaKQ9OGvjvuzBERfPs9L88IrNrdWXG+QD/eACRjuBNCaQFYutDBKhjbI2MGuzsQHe2awnRJKUSTrNU+BtG5h0LbN/ASElUxzfsfwpW6ij+s4H2jCD+tBAl9eVAnxlhsq/0USCYx0CIQrPVdGpUsJES7dbyWIPXM0RaFmVi0p49kDn4vjueNKklGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671204721528771636, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD0P7wUXLq6ellxPE0ajDwse/Y7PXdzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI11BqLyJgbUCUhpRSlIwBbJRNEAGMAXSUR0CfC7pJf6XTdX2UKGgGaAloD0MIMA3DRwS9ckCUhpRSlGgVTRkBaBZHQJ8NWACnxax1fZQoaAZoCWgPQwi/nq9ZLllIQJSGlFKUaBVLwmgWR0CfDnTMJQchdX2UKGgGaAloD0MIndoZpjZFcUCUhpRSlGgVTVoBaBZHQJ8R6jJuEVZ1fZQoaAZoCWgPQwiILNLEeydxQJSGlFKUaBVNJgFoFkdAnxOGapgkT3V9lChoBmgJaA9DCCY5YFcTGXFAlIaUUpRoFU01AWgWR0CfFVD6WPcSdX2UKGgGaAloD0MI5KHvbmWBRECUhpRSlGgVS9doFkdAnxfFaB7NS3V9lChoBmgJaA9DCC+FB82uF0tAlIaUUpRoFUvEaBZHQJ8Yzwe/5+J1fZQoaAZoCWgPQwh+j/rrleNvQJSGlFKUaBVNdQFoFkdAnxs5soDxLHV9lChoBmgJaA9DCMWScve5BWxAlIaUUpRoFU2dAWgWR0CfHd8zAN5MdX2UKGgGaAloD0MIJ2n+mNY+PECUhpRSlGgVS9poFkdAnyCRY/3WWnV9lChoBmgJaA9DCFHbhlGQlGVAlIaUUpRoFU3oA2gWR0CfKVEMspXqdX2UKGgGaAloD0MIIjfDDTjlcUCUhpRSlGgVTcYBaBZHQJ8sQpI+W4V1fZQoaAZoCWgPQwgYPiKmRDZvQJSGlFKUaBVNOwFoFkdAny41B2OhkHV9lChoBmgJaA9DCG7gDtSp4G5AlIaUUpRoFU0lAWgWR0CfMStLteD4dX2UKGgGaAloD0MIFJM3wMzjb0CUhpRSlGgVTR4BaBZHQJ8y0wvg3tN1fZQoaAZoCWgPQwhrD3uhgGVOQJSGlFKUaBVLzWgWR0CfM/Ya5wwTdX2UKGgGaAloD0MIndfYJepMcUCUhpRSlGgVTUgBaBZHQJ83PTz/ZNB1fZQoaAZoCWgPQwiGAODYs6s0QJSGlFKUaBVL1WgWR0CfOGBClabGdX2UKGgGaAloD0MIjj17LpPucECUhpRSlGgVTQMBaBZHQJ8588q4H5d1fZQoaAZoCWgPQwgbSu1FtBVxQJSGlFKUaBVNGwFoFkdAnzua7ulXR3V9lChoBmgJaA9DCBBbejTVh0HAlIaUUpRoFUvFaBZHQJ88rSLIgeR1fZQoaAZoCWgPQwhPQBNhwz1vQJSGlFKUaBVNiwFoFkdAn0Bo7V8TjHV9lChoBmgJaA9DCHhGW5VEvGFAlIaUUpRoFU3oA2gWR0CfSPnZkCmudX2UKGgGaAloD0MIxEKtaR6LcECUhpRSlGgVTRwBaBZHQJ9KsniNsFd1fZQoaAZoCWgPQwiscqHyrwVwQJSGlFKUaBVNBQFoFkdAn0w8OCoS+XV9lChoBmgJaA9DCMPUljrI/FBAlIaUUpRoFUvoaBZHQJ9OuUVzp5h1fZQoaAZoCWgPQwgAj6hQ3Xg5QJSGlFKUaBVL42gWR0CfT/NIbwSbdX2UKGgGaAloD0MIGw5LA39qcECUhpRSlGgVTSEBaBZHQJ9RomsvIwN1fZQoaAZoCWgPQwgWMIFbNxJxQJSGlFKUaBVNFAFoFkdAn1NG6oVEeHV9lChoBmgJaA9DCOBpMuPt5m1AlIaUUpRoFU0uAWgWR0CfVl4i5d4WdX2UKGgGaAloD0MIJqq3BrY+b0CUhpRSlGgVTR4BaBZHQJ9YEmKIi1R1fZQoaAZoCWgPQwjBH37+e5RHQJSGlFKUaBVL3WgWR0CfWUWbwz+FdX2UKGgGaAloD0MIkGltGpsOcUCUhpRSlGgVTQIBaBZHQJ9auODJ2dN1fZQoaAZoCWgPQwjrqdVXV11vQJSGlFKUaBVNNQFoFkdAn13r7Kq4pnV9lChoBmgJaA9DCHpVZ7VAEXBAlIaUUpRoFU0gAWgWR0CfX6oNNJvpdX2UKGgGaAloD0MIcR+5NSkRcUCUhpRSlGgVTXEBaBZHQJ9h8DYAbQ11fZQoaAZoCWgPQwjVer/RzkVwQJSGlFKUaBVNbAFoFkdAn2WjibUgCHV9lChoBmgJaA9DCEVighq+nSrAlIaUUpRoFUvhaBZHQJ9m6/ag2611fZQoaAZoCWgPQwjFBDV8Cz9AQJSGlFKUaBVL4GgWR0CfaDLrX18LdX2UKGgGaAloD0MIkUWaeMeQckCUhpRSlGgVTTYBaBZHQJ9p+HrQgLZ1fZQoaAZoCWgPQwjg1XJnJhJuQJSGlFKUaBVNggFoFkdAn23Tl1bJOnV9lChoBmgJaA9DCIums5NBGW5AlIaUUpRoFU0MAWgWR0Cfb2CQLeANdX2UKGgGaAloD0MIpfPhWQKSb0CUhpRSlGgVTVYBaBZHQJ9xep++dsl1fZQoaAZoCWgPQwhR2ht8YTdxQJSGlFKUaBVNHwFoFkdAn3Re8TSLInV9lChoBmgJaA9DCHGrIAa633FAlIaUUpRoFU0iAWgWR0CfdiDgZTAGdX2UKGgGaAloD0MI4Cu69ZrObkCUhpRSlGgVTXoBaBZHQJ94s7lq8Dl1fZQoaAZoCWgPQwg0TG2pA9huQJSGlFKUaBVNSgFoFkdAn3vgVTJhfHV9lChoBmgJaA9DCD/JHTYR9m5AlIaUUpRoFU0aAWgWR0CffaK8tf5UdX2UKGgGaAloD0MI492RsdogYECUhpRSlGgVTegDaBZHQJ+GXbdrO7h1fZQoaAZoCWgPQwgiMxe4PDJxQJSGlFKUaBVNHgFoFkdAn4gNALRa5nV9lChoBmgJaA9DCAwiUtMu1G5AlIaUUpRoFU0XAWgWR0CfifJKJ2t/dX2UKGgGaAloD0MIhnDMsqfmcECUhpRSlGgVTRsBaBZHQJ+M8vN/vv11fZQoaAZoCWgPQwi/DwcJEfVxQJSGlFKUaBVNUQFoFkdAn48s2m51/3V9lChoBmgJaA9DCFouG53z+W9AlIaUUpRoFU12A2gWR0CfljQSSNfgdX2UKGgGaAloD0MIQfFjzF3pRkCUhpRSlGgVS+VoFkdAn5d9kJ8fFXV9lChoBmgJaA9DCHsWhPI+O1NAlIaUUpRoFUvmaBZHQJ+YvJgb6xh1fZQoaAZoCWgPQwjfpGlQNDlwQJSGlFKUaBVNMQFoFkdAn5vfCQ9zO3V9lChoBmgJaA9DCKBTkJ8Nh3FAlIaUUpRoFU0bAWgWR0CfnYiADq4ZdX2UKGgGaAloD0MInYTSF8JocUCUhpRSlGgVTUYBaBZHQJ+fnH+6y0N1fZQoaAZoCWgPQwhxWBr4UTVwQJSGlFKUaBVNPwFoFkdAn6LFbiZOSHV9lChoBmgJaA9DCKsmiLqPa21AlIaUUpRoFU0AAmgWR0CfpqP1ct5EdX2UKGgGaAloD0MIsd09QDfhcUCUhpRSlGgVTcUBaBZHQJ+qzN9ph4N1fZQoaAZoCWgPQwgxt3u5zyRtQJSGlFKUaBVNKQFoFkdAn6yKDXe3yHV9lChoBmgJaA9DCMb6BiY3L3FAlIaUUpRoFU23AWgWR0Cfr1Xj2i+MdX2UKGgGaAloD0MIW7OVlzw8cUCUhpRSlGgVTSEBaBZHQJ+ySN0eU6h1fZQoaAZoCWgPQwjnwkgvKkBwQJSGlFKUaBVNIAFoFkdAn7P9mYjSonV9lChoBmgJaA9DCFw9J73vum5AlIaUUpRoFU0VAWgWR0CftaHsC1Z1dX2UKGgGaAloD0MITMPwETHxbkCUhpRSlGgVTQEBaBZHQJ+3K+wkgOl1fZQoaAZoCWgPQwg6WtWSztBxQJSGlFKUaBVNLAFoFkdAn7oz+ee4C3V9lChoBmgJaA9DCPOv5ZXrFXBAlIaUUpRoFU0VAWgWR0Cfu+Ey+HrRdX2UKGgGaAloD0MItyqJ7MN6cUCUhpRSlGgVTUEBaBZHQJ+9o5fdAPd1fZQoaAZoCWgPQwiWQiCXOBltQJSGlFKUaBVNOAFoFkdAn8CwZ88cMnV9lChoBmgJaA9DCCCySBOvX3JAlIaUUpRoFU0LAWgWR0CfwkJz1bqydX2UKGgGaAloD0MI7KS+LG3FZUCUhpRSlGgVTegDaBZHQJ/LdXJYDDF1fZQoaAZoCWgPQwgi/fZ14OJyQJSGlFKUaBVNRQFoFkdAn81E4BFNL3V9lChoBmgJaA9DCOVEuwopo0hAlIaUUpRoFUvhaBZHQJ/Of+Q2dd51fZQoaAZoCWgPQwguHXOeMXdwQJSGlFKUaBVNNwFoFkdAn9GYXXRPXXV9lChoBmgJaA9DCDI9YYkHRHFAlIaUUpRoFU0WAWgWR0Cf0zKlpGnXdX2UKGgGaAloD0MIvtpRnCNacUCUhpRSlGgVTTIBaBZHQJ/VCuyNXHR1fZQoaAZoCWgPQwgb8s8MYgZjQJSGlFKUaBVN6ANoFkdAn90QS39aU3V9lChoBmgJaA9DCJupEI8EC3JAlIaUUpRoFU06AWgWR0Cf3v4bS7XhdX2UKGgGaAloD0MIZwxzgrbCbECUhpRSlGgVTSQBaBZHQJ/h/ux8lX11fZQoaAZoCWgPQwh5kQn4NelVQJSGlFKUaBVLwWgWR0Cf4xhBZ6lddX2UKGgGaAloD0MIYD/EBgtBQECUhpRSlGgVS9VoFkdAn+Q98zAN5XV9lChoBmgJaA9DCEgbR6zFUUBAlIaUUpRoFUveaBZHQJ/lbueBg/l1fZQoaAZoCWgPQwgzcEBLV8JMQJSGlFKUaBVL/mgWR0Cf6A8zhxYJdX2UKGgGaAloD0MI9bwbC8qEcUCUhpRSlGgVTUIBaBZHQJ/qEka/ATJ1fZQoaAZoCWgPQwindRvUvrdxQJSGlFKUaBVNMwFoFkdAn+vaIi1RcnV9lChoBmgJaA9DCLyxoDBoRnBAlIaUUpRoFU0xAWgWR0Cf7astCiRGdX2UKGgGaAloD0MI3GeVmVJ4cECUhpRSlGgVTQ0BaBZHQJ/wmvcJtzl1fZQoaAZoCWgPQwhkHvmDAUlxQJSGlFKUaBVNSQFoFkdAn/KYV2zOX3V9lChoBmgJaA9DCMvXZfjPYG1AlIaUUpRoFU1HAWgWR0Cf9KZxaPjodX2UKGgGaAloD0MInOCbps/FcECUhpRSlGgVTSwBaBZHQJ/3rYPGyX51fZQoaAZoCWgPQwgYBiy5irlCQJSGlFKUaBVL52gWR0Cf+PJXhfjTdX2UKGgGaAloD0MIsTOFzmu6Q0CUhpRSlGgVS81oFkdAn/oUJa7mMnV9lChoBmgJaA9DCMeCwqCMmXBAlIaUUpRoFU0vAWgWR0Cf+/By0a60dX2UKGgGaAloD0MIo3cq4F5dcUCUhpRSlGgVTRUBaBZHQJ/+1igCfYl1fZQoaAZoCWgPQwi1qE9yh7pvQJSGlFKUaBVNIwFoFkdAoABKnFYMfHV9lChoBmgJaA9DCHXpX5JKk3FAlIaUUpRoFU0XAWgWR0CgARrW7OE/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679249749564293483, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3mub2jNSw/dfhpPUQ56r414h++zcH5PQAAAAAAAAAAQK5APt//DT8qJy++If7Wvj5zpT2gvr69AAAAAAAAAABmSpq8XJcUumLyiDo+eAw19CS8u6B5obkAAIA/AACAP83fEr1SM8i7PT+uPHu0mjwVjxu931yCPQAAgD8AAIA/mn3CPdsKsD6bKP69dlS4vmVrrbyKpuK9AAAAAAAAAADN8K87bHOjPsEJoDwH4qy+vzs6PdQPm7wAAAAAAAAAAJoLGT43Xko/NrjxPWaq2L5Pm1M+Xg9KvAAAAAAAAAAApo2NPa5R77x8eKU9GTC3vReoKb4oF4e+AACAPwAAgD8g9EU+AWaFP1McpD4u/wG/PkOsPrHpKz4AAAAAAAAAAABe+LxtSlc+Bj1rPjKHiL77gjU+kFbWvQAAAAAAAAAA2sXsvaRzJT9uoPq8/03fvnQOJb6OlO49AAAAAAAAAACafkE9j/47uksfIrwTFD61RVBTO6v9qTQAAAAAAAAAAPofCb5D5fc+8QWFPpNfpr6rzYc9NocqPgAAAAAAAAAAzXkgPUrSsD9nQSM/FfiRvlXHubx/RcQ6AAAAAAAAAACadHk9v8kjPx5Xir0mmNG+fMtmPc7Sgr0AAAAAAAAAAHMzZ76u2Ec/5gs7PfmP6L6iToy+W2jIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZoaNsv7CckCUhpRSlIwBbJRL2owBdJRHQLLA6uivgWJ1fZQoaAZoCWgPQwg0L4fdt6dwQJSGlFKUaBVL92gWR0CywO3E/B3zdX2UKGgGaAloD0MISkT4FwFgckCUhpRSlGgVS9xoFkdAssDza/RE4XV9lChoBmgJaA9DCH2VfOzujHBAlIaUUpRoFUv8aBZHQLLA+jxkNF11fZQoaAZoCWgPQwjAWrVrwqhvQJSGlFKUaBVL32gWR0CywR+QhfShdX2UKGgGaAloD0MIx9eeWRJub0CUhpRSlGgVS+ZoFkdAssE1u0kWynV9lChoBmgJaA9DCOrqjsX2nnFAlIaUUpRoFUv4aBZHQLLBQuL74zt1fZQoaAZoCWgPQwhV+DO8WYRyQJSGlFKUaBVL/2gWR0CywVhsl9jPdX2UKGgGaAloD0MIXeDyWDM+cUCUhpRSlGgVS91oFkdAssFa07bL2nV9lChoBmgJaA9DCJQyqaHNIXBAlIaUUpRoFUvTaBZHQLLBXI8hcJN1fZQoaAZoCWgPQwjZ7Ej1XZZxQJSGlFKUaBVL3mgWR0CywWjJyQxOdX2UKGgGaAloD0MIBcJOsWoabkCUhpRSlGgVS+toFkdAssFvTPSlWXV9lChoBmgJaA9DCIguqG+Z13BAlIaUUpRoFUvQaBZHQLLBp3Lmp2l1fZQoaAZoCWgPQwgclgZ+VM5zQJSGlFKUaBVLy2gWR0CywcHoxHoYdX2UKGgGaAloD0MIwjOhSeK2ckCUhpRSlGgVS+NoFkdAssHGuzQeFXV9lChoBmgJaA9DCDp0et6NF3FAlIaUUpRoFUv4aBZHQLLBz6cy31B1fZQoaAZoCWgPQwhNhuP5DD5uQJSGlFKUaBVL3mgWR0CywhhZpztDdX2UKGgGaAloD0MIwtoYO+HUbUCUhpRSlGgVS+loFkdAssIuk0rK/3V9lChoBmgJaA9DCAeaz7lbH3BAlIaUUpRoFUvqaBZHQLLCNTNdJJ51fZQoaAZoCWgPQwgU0ETYMCRyQJSGlFKUaBVL/2gWR0Cywkd3jdYXdX2UKGgGaAloD0MIiUFg5ZCIcECUhpRSlGgVS8toFkdAssJG9+PRzHV9lChoBmgJaA9DCPW+8bWnEHJAlIaUUpRoFUv0aBZHQLLCacvM8ox1fZQoaAZoCWgPQwhF8L+VbJdwQJSGlFKUaBVLzWgWR0Cywm33Dej3dX2UKGgGaAloD0MIDFnd6vnZckCUhpRSlGgVS9VoFkdAssJ7c2zfJnV9lChoBmgJaA9DCKmFksmpSnJAlIaUUpRoFUveaBZHQLLCiYCyQgd1fZQoaAZoCWgPQwjB5hw8U6hwQJSGlFKUaBVNBwFoFkdAssKm5hBqsXV9lChoBmgJaA9DCIPBNXf04XJAlIaUUpRoFUvraBZHQLLCqxsEaEV1fZQoaAZoCWgPQwgqOLwgIt5xQJSGlFKUaBVL5mgWR0Cyww+s1baAdX2UKGgGaAloD0MI963WiUu0cUCUhpRSlGgVS/1oFkdAssMRKlHjInV9lChoBmgJaA9DCMzPDU3Zw25AlIaUUpRoFUvkaBZHQLLDF8Z1mrd1fZQoaAZoCWgPQwjGhm72B/txQJSGlFKUaBVNMgFoFkdAssMdYOlO5HV9lChoBmgJaA9DCFNCsKqem3BAlIaUUpRoFU0PAWgWR0Cyw0QVO9FndX2UKGgGaAloD0MI7BLVWwNRcECUhpRSlGgVS+RoFkdAsshErUb1iHV9lChoBmgJaA9DCGMraFoik3FAlIaUUpRoFUvkaBZHQLLIiLowEhd1fZQoaAZoCWgPQwj+fjFbMm1yQJSGlFKUaBVL/mgWR0CyyKCwjdHldX2UKGgGaAloD0MILJs5JLWscUCUhpRSlGgVS9doFkdAssjhDLKV6nV9lChoBmgJaA9DCMCSq1g8kHFAlIaUUpRoFU0IAWgWR0CyyOO6d1+zdX2UKGgGaAloD0MI7WRwlPyLcECUhpRSlGgVS+5oFkdAssjjrC3w1HV9lChoBmgJaA9DCKz9ne1RUHNAlIaUUpRoFUvkaBZHQLLI6Ls8gZF1fZQoaAZoCWgPQwhZwARunQdzQJSGlFKUaBVNJAFoFkdAsskDiGWUr3V9lChoBmgJaA9DCPkSKjg8gHFAlIaUUpRoFUvZaBZHQLLJDqptJnR1fZQoaAZoCWgPQwhXzt4ZbRdzQJSGlFKUaBVL5WgWR0CyySt/jKgadX2UKGgGaAloD0MIUYaqmMrWcECUhpRSlGgVTRgBaBZHQLLJOMTviLl1fZQoaAZoCWgPQwho6+Bgb2pwQJSGlFKUaBVL12gWR0CyyZ5fx+a0dX2UKGgGaAloD0MIXhJnRRQtc0CUhpRSlGgVS+FoFkdAssm7tMPBi3V9lChoBmgJaA9DCOCD1y6tAXNAlIaUUpRoFUvzaBZHQLLJ0OKwY+B1fZQoaAZoCWgPQwgogGJkyQVxQJSGlFKUaBVL9GgWR0CyydXOSntOdX2UKGgGaAloD0MIqU2c3G+8cUCUhpRSlGgVS9VoFkdAssnjyy2QXHV9lChoBmgJaA9DCM8Qjll2z3FAlIaUUpRoFUveaBZHQLLKH/Ho5gh1fZQoaAZoCWgPQwiqRq8GKCxyQJSGlFKUaBVL0GgWR0CyykPb9If9dX2UKGgGaAloD0MIUYNpGH64cUCUhpRSlGgVS+doFkdAssqMMAmzB3V9lChoBmgJaA9DCBDLZg7JPXNAlIaUUpRoFUvYaBZHQLLKrefqX4V1fZQoaAZoCWgPQwgq5iDoaHlxQJSGlFKUaBVL3GgWR0CyyrL127nQdX2UKGgGaAloD0MIIT1FDlEKcUCUhpRSlGgVS/poFkdAssr8SwnpjnV9lChoBmgJaA9DCCSdgZGXx3FAlIaUUpRoFUvlaBZHQLLK/wOe8PF1fZQoaAZoCWgPQwgWGLK6FUtyQJSGlFKUaBVL5GgWR0Cyyy9oWYWtdX2UKGgGaAloD0MIvmiPF9IvckCUhpRSlGgVTRIBaBZHQLLLMgOBlMB1fZQoaAZoCWgPQwhp/pjW5jhwQJSGlFKUaBVL8WgWR0Cyyz1ejVQRdX2UKGgGaAloD0MIrBqEuV09ckCUhpRSlGgVS/VoFkdAsswGchC+lHV9lChoBmgJaA9DCGFPO/y1YG9AlIaUUpRoFUvuaBZHQLLMEq94/u91fZQoaAZoCWgPQwifWKfKN89wQJSGlFKUaBVL22gWR0CyzECeyzHCdX2UKGgGaAloD0MIoyO5/AfqbkCUhpRSlGgVTQUBaBZHQLLMZw+t8u11fZQoaAZoCWgPQwiQozmysoNxQJSGlFKUaBVNIwFoFkdAssxnGtITXnV9lChoBmgJaA9DCGglrfjGaHRAlIaUUpRoFUvlaBZHQLLMi3azu4R1fZQoaAZoCWgPQwgNcEG27PhxQJSGlFKUaBVNMAFoFkdAsszDW3BpH3V9lChoBmgJaA9DCAdBR6uaO3BAlIaUUpRoFUvPaBZHQLLMyALy+Yd1fZQoaAZoCWgPQwiKdap8z7lyQJSGlFKUaBVL4GgWR0CyzM2Mn7YTdX2UKGgGaAloD0MI8icqG9YOcUCUhpRSlGgVS+FoFkdAsszmKpDNQnV9lChoBmgJaA9DCDCfrBguUm9AlIaUUpRoFUvaaBZHQLLNB+rU9ZB1fZQoaAZoCWgPQwh5rBkZ5I5zQJSGlFKUaBVL+GgWR0CyzTJCjUNKdX2UKGgGaAloD0MIBi/6CtLNcUCUhpRSlGgVS/xoFkdAss1ee2/i53V9lChoBmgJaA9DCBEBh1CleHBAlIaUUpRoFU0KAWgWR0CyzXPSlWOqdX2UKGgGaAloD0MIVI80uG08cECUhpRSlGgVTQcBaBZHQLLNeD+irT91fZQoaAZoCWgPQwjy64fY4AtzQJSGlFKUaBVL4mgWR0CyzbUL2HtXdX2UKGgGaAloD0MIvRk1X6XYcUCUhpRSlGgVS+RoFkdAss2/qPfbbnV9lChoBmgJaA9DCDquRnbl6HFAlIaUUpRoFUvJaBZHQLLNwwZflZJ1fZQoaAZoCWgPQwiTqYJRSatyQJSGlFKUaBVL4WgWR0Cyzemo3rD7dX2UKGgGaAloD0MIg8E1dzRRcUCUhpRSlGgVS8BoFkdAss3tyksSTXV9lChoBmgJaA9DCNcXCW05HXBAlIaUUpRoFUviaBZHQLLOBB1cMVl1fZQoaAZoCWgPQwiwAny3+UxvQJSGlFKUaBVL1GgWR0CyzhgTyrggdX2UKGgGaAloD0MIw5ygTY6LcUCUhpRSlGgVTQoBaBZHQLLOFzrNW2h1fZQoaAZoCWgPQwj/snvy8CJyQJSGlFKUaBVLyWgWR0Cyzh9WZJCjdX2UKGgGaAloD0MIMnTsoBK/ckCUhpRSlGgVS+toFkdAss40IRh+fHV9lChoBmgJaA9DCHzzGyZa5HBAlIaUUpRoFUvTaBZHQLLOUGmUGFB1fZQoaAZoCWgPQwgFFsCUAWZyQJSGlFKUaBVL/WgWR0Cyzr/egte2dX2UKGgGaAloD0MIQ/8EFyt7b0CUhpRSlGgVS+doFkdAss7IwztTk3V9lChoBmgJaA9DCAcI5uixUXJAlIaUUpRoFUveaBZHQLLOzyI55qx1fZQoaAZoCWgPQwh7hQX3AwJwQJSGlFKUaBVL8WgWR0CyzvQpjMFEdX2UKGgGaAloD0MIa9WuCelkcECUhpRSlGgVS+toFkdAss9B6C17Y3V9lChoBmgJaA9DCNnPYimSzXBAlIaUUpRoFUv2aBZHQLLPTUcn3L51fZQoaAZoCWgPQwhAo3Tp3x9yQJSGlFKUaBVL4mgWR0Cyz2T3M6ikdX2UKGgGaAloD0MISriQRzBjcUCUhpRSlGgVS+hoFkdAss9sCcPOIXV9lChoBmgJaA9DCOkMjLysq29AlIaUUpRoFUvmaBZHQLLPgpzLfUF1fZQoaAZoCWgPQwi4yagyDJlxQJSGlFKUaBVNFgFoFkdAss+RLoOhCnV9lChoBmgJaA9DCNNQo5Ckm3NAlIaUUpRoFUvfaBZHQLLPlg8bJfZ1fZQoaAZoCWgPQwiRRgVOtgJwQJSGlFKUaBVL72gWR0Cyz6TyauwHdX2UKGgGaAloD0MISWdg5CWhcUCUhpRSlGgVS/VoFkdAss+uvkili3V9lChoBmgJaA9DCJgwmpXt1nFAlIaUUpRoFUvTaBZHQLLPtpmmLtN1fZQoaAZoCWgPQwgmAP+UahxyQJSGlFKUaBVL82gWR0Cyz8aPOpsHdX2UKGgGaAloD0MIb/HwngNiUECUhpRSlGgVS71oFkdAss/6qfe1r3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab0910a7049285a62f79cad97319e221d3a04f4723d38a279db5be8afaf45dc4
3
- size 150194
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:680a341bf089c6a9ec1b152e3964143c130e76dcd349e975802d388875275a92
3
+ size 147445
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc9693f790>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc9693f820>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc9693f8b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc9693f940>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fbc9693f9d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fbc9693fa60>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc9693faf0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fbc9693fb80>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc9693fc10>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc9693fca0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc9693fd30>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fbc969400f0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -35,47 +36,47 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAADH/yFo4uTAuLXrz9SgiOQqtcN2aRkm3D95Fri9UTnGqg4Scl4qBbQU45q4kO0qD3pnNRDptHlXPK7nqpHqNKEth2B8XTGgS5i4T7x0c/ILR77hC/EWtj6pRU3vTVn2PNSypUkLMCDevkDTANlL16dO+3Ckb9jr6nGueFrwV5heNy2KCS6vOHsqvbW/Hhn0tgLzPuFjAO9e9wtQlF22Tb7Nk0ureWMGAUQmKJYYpVlAQVDDbGItvOMRUqaM8hgmt7VaY/86kMgaEn+EIapZA5QK261liZlI8b/THaIuLEpQdFcSZtub/V+BkgBofCKTNn4dAJ/4evF4tJ2EGeA1WXOB47QTKBtpgwHlsKwEJOWl8QjChvYooQIsoEeCe3v3IYZJUBUvmr3pvE8BFQs5QqAIaagFqUH9KMMTnvHYtlUVvklUMKFYvRHaS6Hcanq8/DjKFAtNfx71on33u7QRnSYiKB5DjEdHwJP2iyKNaRdtcAjdzTvLu3Xl/IQS8SUSbDjw3ov7FQj+I1jWPbzIJJsjNBPuK+MF5Qztfu/KPDrI8yjr4Rkh+I/8I7Oi7fHqQWmn494b7rI9+IQM+W1eNgppHm8Jd9ulYDvB4ROAHM/XKnSic0a/7+fRlQnINpTsND6PvIDF9X00y1wguKkfyc80ylT6auzFQi6eVtSf64gH792BCSukPIApOYYpiBkTtvyM+247rAuThDUcdJfTriuTZww4wlh4yVyOd9mb0kE+1GlgvCiYHV9OtwwjK1AN2KXRQAJ/MgIrqNNz60/LLgKAs8P5VDFAxuijhsVcDL0DtVjvqodkVN9x8Qg3a9FO08gaokKo4a8SCH+iU7EGObEHLo/OTuqMHiO+oYLCL/1oBPADayQHyz2KXM1vSnCo118Dnhl5hc056N8OJF7LLomPYULUayPFxMznRBtX18uUrJeyF3M0dMyDp1T/QX7aaX0cTx3eeagugkpesT6XDYaKp+D4GWdXXzShjGT7NYhv7xO8VQKwqTfwCHhX0gxVv1TLUPVBmWd07gyYH2V82DPsaggk0Tygya9s/wR4gYeGa76a1UsQUhQh7jvb46Y2Ip6tXLEo8erkw2wJ29GnkhSGqWtQC8xvwJf32On1NOyK5NR8LV5VII/rOd+mrmEckLheZOP/1dugxCuuSjGmuY7AROgV2ReNtLXFlftIbps55XGze4z8QnNpUQd2PG3HsqF82Ac9q7V5GVwm36muEzVrISv+L3/xyDPGn+DvhG2mzSFKDnGFaysP0h04bVNvPf1qdERl3QJ3kh9H9lvpf6dKDplgBj5RuV0eiDnzch5mIXTYwSVzP7jBwGUGnHjMi48OE+M5Z6vNHHeyxBRmYfsy93sbQROjI6UGkjQyxsSROLwZOrzRtaey1llZFidlbzAwqCtWOlURYNbTrOmrEYhCP7E5mHKbsYzywycj3rtOnPY3NUb7aSM+xAKacH40YtJEBcSEvrPS7/ZlGyRShBjNNL1Hznkv8FUidpjhmDfGIE56vb4a+jUJODwZ87rM0+3B3uItC98qCcWG+Drg2Is/ds4N7UlN7QuMzFI1H2mTpyS9Ws6r84klQo9WPnPw4rDRVrWcvtUSPosWBJuL0OcnvFtnLgfrWBgoahPJ+Y2K64oNw6dgN/g0tYEB2xLHZl/friXeFMenKn2iE4nB7tZvEyiVv03XTy1fsvkx9/H0NBfHm5nPRIGNr6xYhQ9Rvk6j6ZyCeWhZKTo8IvSKOJG0zG6teuUiSqXM0C/QxZhJcsenrmw2w2yg3/hEvY5uQNHH0BnvPELy0gSMuDXyxmwgnWk8VwkB7vbT2NjIgfsCv8UoO5NKBUf7Q2tMWvIo9L9MvDoyV3NXVsJIHrzVeMnk6gc/W8Eytx2XbV+FxysigXdCd24mm7zw4x9hNvizNlJzU0XOmpQ4HM+0WB8MsjOXHQ2xKqA7njC2Enxe1Fjdm8v5XAfii3b8oC9aaU0cvYRFIuVSJ2JOPxBf/WT+E00C7h2BIt+1kIHFAba0HsjTzeibjutuUo2rhfYTARtiGCyKvxCdkd3Lqq/8LaFujRPttQgmFV1szNvbf84r+I0mAd/thAVxfrdOokkTsM7RisaEer7ypjuGvW2E9HpqM6YLedNKxarvbenje0G5aF5ayLJFZ5CrG69FOx8sSYL/923Sb4dh24JwjeKbadz7ZCloV0FDZ+Gf8WBlFHxqKKtelejeZfshrE4EG1cYx868stSiavPflrscvdabrQ4XzGIDG/Cg3IXWq0s84jf51VSbc8638BPHoaKahz/rDEkBV81BzLyrVPSUrXHkIyfcBindsVWED1Wz3Dsk/7H/jYegnGxGK02XqyzcKp92HeJ2XKR9osYklVLA8EnNbcZDeVXmVgsPgG+8n9eCzOtRiebMOgHJiY+1iJkxIb3T06yIYbGV75NZqTW/znnwoeFnkN4jKujMuO0Jj+FHyhwAVXrhC41LXmX/gevB0FqUkWgKoP2+TeImQIkPYNe/8ClfTouaBL5atdCfniMio1w61XjCGJxl01Mw9YDp6G0ra18lpFPyNej5C9dTrMD82wsV0gwJDAZcKdnWdKcgMMN/80IcMiXZY/f0GSR7f49pl3EcftnbvM9aM5wshDq+Sb1B8sT9hkT3WRXfg1Ibqj08uf9BKvHL+DyqGoDU2jrYIqVDucnZw9p1CWD5IcvkykIA9tn6GPSiBWvfTVR9hNThGriT/zcFSWM3qi4RyVfGWr+ghzlwBsHkJaVsFSVRDwEm/hnM0txO8fJ63oVRkDbw68+HFK+KtjP3BlXnluszWXQakaEG0L4H9jaRboRXfc6EYb1m7L9devVth6ujgMcBQcDQuQvO5Quq3wV+UnrR5JiB3U8cQC0K/jUtk/uQd2JrnkOqpVulxkNVrsWCbjZPX/2JVc8oMnjyjhfZquNE7N+XzYb01Isp10//zaB9ukGPaGOQ+x28Zj7jvTZQTYLOQIA9Mg7KlvMUcYshBtoM8+SWiioy1ipjffIQoN6UPRl8DaNodAmXoXORQXEnh/g4E4gN6R7EZukK51lpDWPdTmA4y6uAGtLm1ZLABPZVH/1zjyui24tBpxha0kAfm+o4EM5C1fTYJpatgzG/gwkLoAwKXnHRfl2iHYJXPlaKQ9OGvjvuzBERfPs9L88IrNrdWXG+QD/eACRjuBNCaQFYutDBKhjbI2MGuzsQHe2awnRJKUSTrNU+BtG5h0LbN/ASElUxzfsfwpW6ij+s4H2jCD+tBAl9eVAnxlhsq/0USCYx0CIQrPVdGpUsJES7dbyWIPXM0RaFmVi0p49kDn4vjueNKklGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
- "_np_random": "RandomState(MT19937)"
43
  },
44
- "n_envs": 1,
45
- "num_timesteps": 1000448,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671204721528771636,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD0P7wUXLq6ellxPE0ajDwse/Y7PXdzvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.00044800000000000395,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI11BqLyJgbUCUhpRSlIwBbJRNEAGMAXSUR0CfC7pJf6XTdX2UKGgGaAloD0MIMA3DRwS9ckCUhpRSlGgVTRkBaBZHQJ8NWACnxax1fZQoaAZoCWgPQwi/nq9ZLllIQJSGlFKUaBVLwmgWR0CfDnTMJQchdX2UKGgGaAloD0MIndoZpjZFcUCUhpRSlGgVTVoBaBZHQJ8R6jJuEVZ1fZQoaAZoCWgPQwiILNLEeydxQJSGlFKUaBVNJgFoFkdAnxOGapgkT3V9lChoBmgJaA9DCCY5YFcTGXFAlIaUUpRoFU01AWgWR0CfFVD6WPcSdX2UKGgGaAloD0MI5KHvbmWBRECUhpRSlGgVS9doFkdAnxfFaB7NS3V9lChoBmgJaA9DCC+FB82uF0tAlIaUUpRoFUvEaBZHQJ8Yzwe/5+J1fZQoaAZoCWgPQwh+j/rrleNvQJSGlFKUaBVNdQFoFkdAnxs5soDxLHV9lChoBmgJaA9DCMWScve5BWxAlIaUUpRoFU2dAWgWR0CfHd8zAN5MdX2UKGgGaAloD0MIJ2n+mNY+PECUhpRSlGgVS9poFkdAnyCRY/3WWnV9lChoBmgJaA9DCFHbhlGQlGVAlIaUUpRoFU3oA2gWR0CfKVEMspXqdX2UKGgGaAloD0MIIjfDDTjlcUCUhpRSlGgVTcYBaBZHQJ8sQpI+W4V1fZQoaAZoCWgPQwgYPiKmRDZvQJSGlFKUaBVNOwFoFkdAny41B2OhkHV9lChoBmgJaA9DCG7gDtSp4G5AlIaUUpRoFU0lAWgWR0CfMStLteD4dX2UKGgGaAloD0MIFJM3wMzjb0CUhpRSlGgVTR4BaBZHQJ8y0wvg3tN1fZQoaAZoCWgPQwhrD3uhgGVOQJSGlFKUaBVLzWgWR0CfM/Ya5wwTdX2UKGgGaAloD0MIndfYJepMcUCUhpRSlGgVTUgBaBZHQJ83PTz/ZNB1fZQoaAZoCWgPQwiGAODYs6s0QJSGlFKUaBVL1WgWR0CfOGBClabGdX2UKGgGaAloD0MIjj17LpPucECUhpRSlGgVTQMBaBZHQJ8588q4H5d1fZQoaAZoCWgPQwgbSu1FtBVxQJSGlFKUaBVNGwFoFkdAnzua7ulXR3V9lChoBmgJaA9DCBBbejTVh0HAlIaUUpRoFUvFaBZHQJ88rSLIgeR1fZQoaAZoCWgPQwhPQBNhwz1vQJSGlFKUaBVNiwFoFkdAn0Bo7V8TjHV9lChoBmgJaA9DCHhGW5VEvGFAlIaUUpRoFU3oA2gWR0CfSPnZkCmudX2UKGgGaAloD0MIxEKtaR6LcECUhpRSlGgVTRwBaBZHQJ9KsniNsFd1fZQoaAZoCWgPQwiscqHyrwVwQJSGlFKUaBVNBQFoFkdAn0w8OCoS+XV9lChoBmgJaA9DCMPUljrI/FBAlIaUUpRoFUvoaBZHQJ9OuUVzp5h1fZQoaAZoCWgPQwgAj6hQ3Xg5QJSGlFKUaBVL42gWR0CfT/NIbwSbdX2UKGgGaAloD0MIGw5LA39qcECUhpRSlGgVTSEBaBZHQJ9RomsvIwN1fZQoaAZoCWgPQwgWMIFbNxJxQJSGlFKUaBVNFAFoFkdAn1NG6oVEeHV9lChoBmgJaA9DCOBpMuPt5m1AlIaUUpRoFU0uAWgWR0CfVl4i5d4WdX2UKGgGaAloD0MIJqq3BrY+b0CUhpRSlGgVTR4BaBZHQJ9YEmKIi1R1fZQoaAZoCWgPQwjBH37+e5RHQJSGlFKUaBVL3WgWR0CfWUWbwz+FdX2UKGgGaAloD0MIkGltGpsOcUCUhpRSlGgVTQIBaBZHQJ9auODJ2dN1fZQoaAZoCWgPQwjrqdVXV11vQJSGlFKUaBVNNQFoFkdAn13r7Kq4pnV9lChoBmgJaA9DCHpVZ7VAEXBAlIaUUpRoFU0gAWgWR0CfX6oNNJvpdX2UKGgGaAloD0MIcR+5NSkRcUCUhpRSlGgVTXEBaBZHQJ9h8DYAbQ11fZQoaAZoCWgPQwjVer/RzkVwQJSGlFKUaBVNbAFoFkdAn2WjibUgCHV9lChoBmgJaA9DCEVighq+nSrAlIaUUpRoFUvhaBZHQJ9m6/ag2611fZQoaAZoCWgPQwjFBDV8Cz9AQJSGlFKUaBVL4GgWR0CfaDLrX18LdX2UKGgGaAloD0MIkUWaeMeQckCUhpRSlGgVTTYBaBZHQJ9p+HrQgLZ1fZQoaAZoCWgPQwjg1XJnJhJuQJSGlFKUaBVNggFoFkdAn23Tl1bJOnV9lChoBmgJaA9DCIums5NBGW5AlIaUUpRoFU0MAWgWR0Cfb2CQLeANdX2UKGgGaAloD0MIpfPhWQKSb0CUhpRSlGgVTVYBaBZHQJ9xep++dsl1fZQoaAZoCWgPQwhR2ht8YTdxQJSGlFKUaBVNHwFoFkdAn3Re8TSLInV9lChoBmgJaA9DCHGrIAa633FAlIaUUpRoFU0iAWgWR0CfdiDgZTAGdX2UKGgGaAloD0MI4Cu69ZrObkCUhpRSlGgVTXoBaBZHQJ94s7lq8Dl1fZQoaAZoCWgPQwg0TG2pA9huQJSGlFKUaBVNSgFoFkdAn3vgVTJhfHV9lChoBmgJaA9DCD/JHTYR9m5AlIaUUpRoFU0aAWgWR0CffaK8tf5UdX2UKGgGaAloD0MI492RsdogYECUhpRSlGgVTegDaBZHQJ+GXbdrO7h1fZQoaAZoCWgPQwgiMxe4PDJxQJSGlFKUaBVNHgFoFkdAn4gNALRa5nV9lChoBmgJaA9DCAwiUtMu1G5AlIaUUpRoFU0XAWgWR0CfifJKJ2t/dX2UKGgGaAloD0MIhnDMsqfmcECUhpRSlGgVTRsBaBZHQJ+M8vN/vv11fZQoaAZoCWgPQwi/DwcJEfVxQJSGlFKUaBVNUQFoFkdAn48s2m51/3V9lChoBmgJaA9DCFouG53z+W9AlIaUUpRoFU12A2gWR0CfljQSSNfgdX2UKGgGaAloD0MIQfFjzF3pRkCUhpRSlGgVS+VoFkdAn5d9kJ8fFXV9lChoBmgJaA9DCHsWhPI+O1NAlIaUUpRoFUvmaBZHQJ+YvJgb6xh1fZQoaAZoCWgPQwjfpGlQNDlwQJSGlFKUaBVNMQFoFkdAn5vfCQ9zO3V9lChoBmgJaA9DCKBTkJ8Nh3FAlIaUUpRoFU0bAWgWR0CfnYiADq4ZdX2UKGgGaAloD0MInYTSF8JocUCUhpRSlGgVTUYBaBZHQJ+fnH+6y0N1fZQoaAZoCWgPQwhxWBr4UTVwQJSGlFKUaBVNPwFoFkdAn6LFbiZOSHV9lChoBmgJaA9DCKsmiLqPa21AlIaUUpRoFU0AAmgWR0CfpqP1ct5EdX2UKGgGaAloD0MIsd09QDfhcUCUhpRSlGgVTcUBaBZHQJ+qzN9ph4N1fZQoaAZoCWgPQwgxt3u5zyRtQJSGlFKUaBVNKQFoFkdAn6yKDXe3yHV9lChoBmgJaA9DCMb6BiY3L3FAlIaUUpRoFU23AWgWR0Cfr1Xj2i+MdX2UKGgGaAloD0MIW7OVlzw8cUCUhpRSlGgVTSEBaBZHQJ+ySN0eU6h1fZQoaAZoCWgPQwjnwkgvKkBwQJSGlFKUaBVNIAFoFkdAn7P9mYjSonV9lChoBmgJaA9DCFw9J73vum5AlIaUUpRoFU0VAWgWR0CftaHsC1Z1dX2UKGgGaAloD0MITMPwETHxbkCUhpRSlGgVTQEBaBZHQJ+3K+wkgOl1fZQoaAZoCWgPQwg6WtWSztBxQJSGlFKUaBVNLAFoFkdAn7oz+ee4C3V9lChoBmgJaA9DCPOv5ZXrFXBAlIaUUpRoFU0VAWgWR0Cfu+Ey+HrRdX2UKGgGaAloD0MItyqJ7MN6cUCUhpRSlGgVTUEBaBZHQJ+9o5fdAPd1fZQoaAZoCWgPQwiWQiCXOBltQJSGlFKUaBVNOAFoFkdAn8CwZ88cMnV9lChoBmgJaA9DCCCySBOvX3JAlIaUUpRoFU0LAWgWR0CfwkJz1bqydX2UKGgGaAloD0MI7KS+LG3FZUCUhpRSlGgVTegDaBZHQJ/LdXJYDDF1fZQoaAZoCWgPQwgi/fZ14OJyQJSGlFKUaBVNRQFoFkdAn81E4BFNL3V9lChoBmgJaA9DCOVEuwopo0hAlIaUUpRoFUvhaBZHQJ/Of+Q2dd51fZQoaAZoCWgPQwguHXOeMXdwQJSGlFKUaBVNNwFoFkdAn9GYXXRPXXV9lChoBmgJaA9DCDI9YYkHRHFAlIaUUpRoFU0WAWgWR0Cf0zKlpGnXdX2UKGgGaAloD0MIvtpRnCNacUCUhpRSlGgVTTIBaBZHQJ/VCuyNXHR1fZQoaAZoCWgPQwgb8s8MYgZjQJSGlFKUaBVN6ANoFkdAn90QS39aU3V9lChoBmgJaA9DCJupEI8EC3JAlIaUUpRoFU06AWgWR0Cf3v4bS7XhdX2UKGgGaAloD0MIZwxzgrbCbECUhpRSlGgVTSQBaBZHQJ/h/ux8lX11fZQoaAZoCWgPQwh5kQn4NelVQJSGlFKUaBVLwWgWR0Cf4xhBZ6lddX2UKGgGaAloD0MIYD/EBgtBQECUhpRSlGgVS9VoFkdAn+Q98zAN5XV9lChoBmgJaA9DCEgbR6zFUUBAlIaUUpRoFUveaBZHQJ/lbueBg/l1fZQoaAZoCWgPQwgzcEBLV8JMQJSGlFKUaBVL/mgWR0Cf6A8zhxYJdX2UKGgGaAloD0MI9bwbC8qEcUCUhpRSlGgVTUIBaBZHQJ/qEka/ATJ1fZQoaAZoCWgPQwindRvUvrdxQJSGlFKUaBVNMwFoFkdAn+vaIi1RcnV9lChoBmgJaA9DCLyxoDBoRnBAlIaUUpRoFU0xAWgWR0Cf7astCiRGdX2UKGgGaAloD0MI3GeVmVJ4cECUhpRSlGgVTQ0BaBZHQJ/wmvcJtzl1fZQoaAZoCWgPQwhkHvmDAUlxQJSGlFKUaBVNSQFoFkdAn/KYV2zOX3V9lChoBmgJaA9DCMvXZfjPYG1AlIaUUpRoFU1HAWgWR0Cf9KZxaPjodX2UKGgGaAloD0MInOCbps/FcECUhpRSlGgVTSwBaBZHQJ/3rYPGyX51fZQoaAZoCWgPQwgYBiy5irlCQJSGlFKUaBVL52gWR0Cf+PJXhfjTdX2UKGgGaAloD0MIsTOFzmu6Q0CUhpRSlGgVS81oFkdAn/oUJa7mMnV9lChoBmgJaA9DCMeCwqCMmXBAlIaUUpRoFU0vAWgWR0Cf+/By0a60dX2UKGgGaAloD0MIo3cq4F5dcUCUhpRSlGgVTRUBaBZHQJ/+1igCfYl1fZQoaAZoCWgPQwi1qE9yh7pvQJSGlFKUaBVNIwFoFkdAoABKnFYMfHV9lChoBmgJaA9DCHXpX5JKk3FAlIaUUpRoFU0XAWgWR0CgARrW7OE/dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 3908,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +87,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
  "n": 4,
41
  "_shape": [],
42
  "dtype": "int64",
43
+ "_np_random": null
44
  },
45
+ "n_envs": 16,
46
+ "num_timesteps": 2015232,
47
+ "_total_timesteps": 2000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1679249749564293483,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3mub2jNSw/dfhpPUQ56r414h++zcH5PQAAAAAAAAAAQK5APt//DT8qJy++If7Wvj5zpT2gvr69AAAAAAAAAABmSpq8XJcUumLyiDo+eAw19CS8u6B5obkAAIA/AACAP83fEr1SM8i7PT+uPHu0mjwVjxu931yCPQAAgD8AAIA/mn3CPdsKsD6bKP69dlS4vmVrrbyKpuK9AAAAAAAAAADN8K87bHOjPsEJoDwH4qy+vzs6PdQPm7wAAAAAAAAAAJoLGT43Xko/NrjxPWaq2L5Pm1M+Xg9KvAAAAAAAAAAApo2NPa5R77x8eKU9GTC3vReoKb4oF4e+AACAPwAAgD8g9EU+AWaFP1McpD4u/wG/PkOsPrHpKz4AAAAAAAAAAABe+LxtSlc+Bj1rPjKHiL77gjU+kFbWvQAAAAAAAAAA2sXsvaRzJT9uoPq8/03fvnQOJb6OlO49AAAAAAAAAACafkE9j/47uksfIrwTFD61RVBTO6v9qTQAAAAAAAAAAPofCb5D5fc+8QWFPpNfpr6rzYc9NocqPgAAAAAAAAAAzXkgPUrSsD9nQSM/FfiRvlXHubx/RcQ6AAAAAAAAAACadHk9v8kjPx5Xir0mmNG+fMtmPc7Sgr0AAAAAAAAAAHMzZ76u2Ec/5gs7PfmP6L6iToy+W2jIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
  },
66
  "_last_original_obs": null,
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.007616000000000067,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZoaNsv7CckCUhpRSlIwBbJRL2owBdJRHQLLA6uivgWJ1fZQoaAZoCWgPQwg0L4fdt6dwQJSGlFKUaBVL92gWR0CywO3E/B3zdX2UKGgGaAloD0MISkT4FwFgckCUhpRSlGgVS9xoFkdAssDza/RE4XV9lChoBmgJaA9DCH2VfOzujHBAlIaUUpRoFUv8aBZHQLLA+jxkNF11fZQoaAZoCWgPQwjAWrVrwqhvQJSGlFKUaBVL32gWR0CywR+QhfShdX2UKGgGaAloD0MIx9eeWRJub0CUhpRSlGgVS+ZoFkdAssE1u0kWynV9lChoBmgJaA9DCOrqjsX2nnFAlIaUUpRoFUv4aBZHQLLBQuL74zt1fZQoaAZoCWgPQwhV+DO8WYRyQJSGlFKUaBVL/2gWR0CywVhsl9jPdX2UKGgGaAloD0MIXeDyWDM+cUCUhpRSlGgVS91oFkdAssFa07bL2nV9lChoBmgJaA9DCJQyqaHNIXBAlIaUUpRoFUvTaBZHQLLBXI8hcJN1fZQoaAZoCWgPQwjZ7Ej1XZZxQJSGlFKUaBVL3mgWR0CywWjJyQxOdX2UKGgGaAloD0MIBcJOsWoabkCUhpRSlGgVS+toFkdAssFvTPSlWXV9lChoBmgJaA9DCIguqG+Z13BAlIaUUpRoFUvQaBZHQLLBp3Lmp2l1fZQoaAZoCWgPQwgclgZ+VM5zQJSGlFKUaBVLy2gWR0CywcHoxHoYdX2UKGgGaAloD0MIwjOhSeK2ckCUhpRSlGgVS+NoFkdAssHGuzQeFXV9lChoBmgJaA9DCDp0et6NF3FAlIaUUpRoFUv4aBZHQLLBz6cy31B1fZQoaAZoCWgPQwhNhuP5DD5uQJSGlFKUaBVL3mgWR0CywhhZpztDdX2UKGgGaAloD0MIwtoYO+HUbUCUhpRSlGgVS+loFkdAssIuk0rK/3V9lChoBmgJaA9DCAeaz7lbH3BAlIaUUpRoFUvqaBZHQLLCNTNdJJ51fZQoaAZoCWgPQwgU0ETYMCRyQJSGlFKUaBVL/2gWR0Cywkd3jdYXdX2UKGgGaAloD0MIiUFg5ZCIcECUhpRSlGgVS8toFkdAssJG9+PRzHV9lChoBmgJaA9DCPW+8bWnEHJAlIaUUpRoFUv0aBZHQLLCacvM8ox1fZQoaAZoCWgPQwhF8L+VbJdwQJSGlFKUaBVLzWgWR0Cywm33Dej3dX2UKGgGaAloD0MIDFnd6vnZckCUhpRSlGgVS9VoFkdAssJ7c2zfJnV9lChoBmgJaA9DCKmFksmpSnJAlIaUUpRoFUveaBZHQLLCiYCyQgd1fZQoaAZoCWgPQwjB5hw8U6hwQJSGlFKUaBVNBwFoFkdAssKm5hBqsXV9lChoBmgJaA9DCIPBNXf04XJAlIaUUpRoFUvraBZHQLLCqxsEaEV1fZQoaAZoCWgPQwgqOLwgIt5xQJSGlFKUaBVL5mgWR0Cyww+s1baAdX2UKGgGaAloD0MI963WiUu0cUCUhpRSlGgVS/1oFkdAssMRKlHjInV9lChoBmgJaA9DCMzPDU3Zw25AlIaUUpRoFUvkaBZHQLLDF8Z1mrd1fZQoaAZoCWgPQwjGhm72B/txQJSGlFKUaBVNMgFoFkdAssMdYOlO5HV9lChoBmgJaA9DCFNCsKqem3BAlIaUUpRoFU0PAWgWR0Cyw0QVO9FndX2UKGgGaAloD0MI7BLVWwNRcECUhpRSlGgVS+RoFkdAsshErUb1iHV9lChoBmgJaA9DCGMraFoik3FAlIaUUpRoFUvkaBZHQLLIiLowEhd1fZQoaAZoCWgPQwj+fjFbMm1yQJSGlFKUaBVL/mgWR0CyyKCwjdHldX2UKGgGaAloD0MILJs5JLWscUCUhpRSlGgVS9doFkdAssjhDLKV6nV9lChoBmgJaA9DCMCSq1g8kHFAlIaUUpRoFU0IAWgWR0CyyOO6d1+zdX2UKGgGaAloD0MI7WRwlPyLcECUhpRSlGgVS+5oFkdAssjjrC3w1HV9lChoBmgJaA9DCKz9ne1RUHNAlIaUUpRoFUvkaBZHQLLI6Ls8gZF1fZQoaAZoCWgPQwhZwARunQdzQJSGlFKUaBVNJAFoFkdAsskDiGWUr3V9lChoBmgJaA9DCPkSKjg8gHFAlIaUUpRoFUvZaBZHQLLJDqptJnR1fZQoaAZoCWgPQwhXzt4ZbRdzQJSGlFKUaBVL5WgWR0CyySt/jKgadX2UKGgGaAloD0MIUYaqmMrWcECUhpRSlGgVTRgBaBZHQLLJOMTviLl1fZQoaAZoCWgPQwho6+Bgb2pwQJSGlFKUaBVL12gWR0CyyZ5fx+a0dX2UKGgGaAloD0MIXhJnRRQtc0CUhpRSlGgVS+FoFkdAssm7tMPBi3V9lChoBmgJaA9DCOCD1y6tAXNAlIaUUpRoFUvzaBZHQLLJ0OKwY+B1fZQoaAZoCWgPQwgogGJkyQVxQJSGlFKUaBVL9GgWR0CyydXOSntOdX2UKGgGaAloD0MIqU2c3G+8cUCUhpRSlGgVS9VoFkdAssnjyy2QXHV9lChoBmgJaA9DCM8Qjll2z3FAlIaUUpRoFUveaBZHQLLKH/Ho5gh1fZQoaAZoCWgPQwiqRq8GKCxyQJSGlFKUaBVL0GgWR0CyykPb9If9dX2UKGgGaAloD0MIUYNpGH64cUCUhpRSlGgVS+doFkdAssqMMAmzB3V9lChoBmgJaA9DCBDLZg7JPXNAlIaUUpRoFUvYaBZHQLLKrefqX4V1fZQoaAZoCWgPQwgq5iDoaHlxQJSGlFKUaBVL3GgWR0CyyrL127nQdX2UKGgGaAloD0MIIT1FDlEKcUCUhpRSlGgVS/poFkdAssr8SwnpjnV9lChoBmgJaA9DCCSdgZGXx3FAlIaUUpRoFUvlaBZHQLLK/wOe8PF1fZQoaAZoCWgPQwgWGLK6FUtyQJSGlFKUaBVL5GgWR0Cyyy9oWYWtdX2UKGgGaAloD0MIvmiPF9IvckCUhpRSlGgVTRIBaBZHQLLLMgOBlMB1fZQoaAZoCWgPQwhp/pjW5jhwQJSGlFKUaBVL8WgWR0Cyyz1ejVQRdX2UKGgGaAloD0MIrBqEuV09ckCUhpRSlGgVS/VoFkdAsswGchC+lHV9lChoBmgJaA9DCGFPO/y1YG9AlIaUUpRoFUvuaBZHQLLMEq94/u91fZQoaAZoCWgPQwifWKfKN89wQJSGlFKUaBVL22gWR0CyzECeyzHCdX2UKGgGaAloD0MIoyO5/AfqbkCUhpRSlGgVTQUBaBZHQLLMZw+t8u11fZQoaAZoCWgPQwiQozmysoNxQJSGlFKUaBVNIwFoFkdAssxnGtITXnV9lChoBmgJaA9DCGglrfjGaHRAlIaUUpRoFUvlaBZHQLLMi3azu4R1fZQoaAZoCWgPQwgNcEG27PhxQJSGlFKUaBVNMAFoFkdAsszDW3BpH3V9lChoBmgJaA9DCAdBR6uaO3BAlIaUUpRoFUvPaBZHQLLMyALy+Yd1fZQoaAZoCWgPQwiKdap8z7lyQJSGlFKUaBVL4GgWR0CyzM2Mn7YTdX2UKGgGaAloD0MI8icqG9YOcUCUhpRSlGgVS+FoFkdAsszmKpDNQnV9lChoBmgJaA9DCDCfrBguUm9AlIaUUpRoFUvaaBZHQLLNB+rU9ZB1fZQoaAZoCWgPQwh5rBkZ5I5zQJSGlFKUaBVL+GgWR0CyzTJCjUNKdX2UKGgGaAloD0MIBi/6CtLNcUCUhpRSlGgVS/xoFkdAss1ee2/i53V9lChoBmgJaA9DCBEBh1CleHBAlIaUUpRoFU0KAWgWR0CyzXPSlWOqdX2UKGgGaAloD0MIVI80uG08cECUhpRSlGgVTQcBaBZHQLLNeD+irT91fZQoaAZoCWgPQwjy64fY4AtzQJSGlFKUaBVL4mgWR0CyzbUL2HtXdX2UKGgGaAloD0MIvRk1X6XYcUCUhpRSlGgVS+RoFkdAss2/qPfbbnV9lChoBmgJaA9DCDquRnbl6HFAlIaUUpRoFUvJaBZHQLLNwwZflZJ1fZQoaAZoCWgPQwiTqYJRSatyQJSGlFKUaBVL4WgWR0Cyzemo3rD7dX2UKGgGaAloD0MIg8E1dzRRcUCUhpRSlGgVS8BoFkdAss3tyksSTXV9lChoBmgJaA9DCNcXCW05HXBAlIaUUpRoFUviaBZHQLLOBB1cMVl1fZQoaAZoCWgPQwiwAny3+UxvQJSGlFKUaBVL1GgWR0CyzhgTyrggdX2UKGgGaAloD0MIw5ygTY6LcUCUhpRSlGgVTQoBaBZHQLLOFzrNW2h1fZQoaAZoCWgPQwj/snvy8CJyQJSGlFKUaBVLyWgWR0Cyzh9WZJCjdX2UKGgGaAloD0MIMnTsoBK/ckCUhpRSlGgVS+toFkdAss40IRh+fHV9lChoBmgJaA9DCHzzGyZa5HBAlIaUUpRoFUvTaBZHQLLOUGmUGFB1fZQoaAZoCWgPQwgFFsCUAWZyQJSGlFKUaBVL/WgWR0Cyzr/egte2dX2UKGgGaAloD0MIQ/8EFyt7b0CUhpRSlGgVS+doFkdAss7IwztTk3V9lChoBmgJaA9DCAcI5uixUXJAlIaUUpRoFUveaBZHQLLOzyI55qx1fZQoaAZoCWgPQwh7hQX3AwJwQJSGlFKUaBVL8WgWR0CyzvQpjMFEdX2UKGgGaAloD0MIa9WuCelkcECUhpRSlGgVS+toFkdAss9B6C17Y3V9lChoBmgJaA9DCNnPYimSzXBAlIaUUpRoFUv2aBZHQLLPTUcn3L51fZQoaAZoCWgPQwhAo3Tp3x9yQJSGlFKUaBVL4mgWR0Cyz2T3M6ikdX2UKGgGaAloD0MISriQRzBjcUCUhpRSlGgVS+hoFkdAss9sCcPOIXV9lChoBmgJaA9DCOkMjLysq29AlIaUUpRoFUvmaBZHQLLPgpzLfUF1fZQoaAZoCWgPQwi4yagyDJlxQJSGlFKUaBVNFgFoFkdAss+RLoOhCnV9lChoBmgJaA9DCNNQo5Ckm3NAlIaUUpRoFUvfaBZHQLLPlg8bJfZ1fZQoaAZoCWgPQwiRRgVOtgJwQJSGlFKUaBVL72gWR0Cyz6TyauwHdX2UKGgGaAloD0MISWdg5CWhcUCUhpRSlGgVS/VoFkdAss+uvkili3V9lChoBmgJaA9DCJgwmpXt1nFAlIaUUpRoFUvTaBZHQLLPtpmmLtN1fZQoaAZoCWgPQwgmAP+UahxyQJSGlFKUaBVL82gWR0Cyz8aPOpsHdX2UKGgGaAloD0MIb/HwngNiUECUhpRSlGgVS71oFkdAss/6qfe1r3VlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 492,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8b8b9fe56d70722d560d2da7d2e32b9e1b928fc6a914b15bebf010329bce9a2
3
- size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bc2a722dfbbb6d40d2264653286be5f424fde82ec0fcdb0d94b9cade4345d12
3
+ size 88057
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:240f9cce7374f643d55e393f08d972f79c6108fafaf372db1020d309ba1f15d6
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d467320f69bf3a24331224d0ad6ce90488d63104d571021fafb9425757f1b50
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 238.84620976946613, "std_reward": 65.94132236783422, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T16:17:02.759698"}
 
1
+ {"mean_reward": 286.25654878884654, "std_reward": 20.535451245073567, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T19:40:54.357154"}