|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: xlnet-base-cased_fold_7_binary_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlnet-base-cased_fold_7_binary_v1 |
|
|
|
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7774 |
|
- F1: 0.8111 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 288 | 0.4189 | 0.7903 | |
|
| 0.432 | 2.0 | 576 | 0.3927 | 0.8045 | |
|
| 0.432 | 3.0 | 864 | 0.4868 | 0.8108 | |
|
| 0.2573 | 4.0 | 1152 | 0.6763 | 0.8019 | |
|
| 0.2573 | 5.0 | 1440 | 0.8132 | 0.8105 | |
|
| 0.1612 | 6.0 | 1728 | 0.8544 | 0.8086 | |
|
| 0.0972 | 7.0 | 2016 | 1.1274 | 0.8109 | |
|
| 0.0972 | 8.0 | 2304 | 1.2622 | 0.8056 | |
|
| 0.0515 | 9.0 | 2592 | 1.3398 | 0.8013 | |
|
| 0.0515 | 10.0 | 2880 | 1.5421 | 0.8082 | |
|
| 0.0244 | 11.0 | 3168 | 1.4931 | 0.8042 | |
|
| 0.0244 | 12.0 | 3456 | 1.5744 | 0.8045 | |
|
| 0.0287 | 13.0 | 3744 | 1.4169 | 0.8091 | |
|
| 0.0255 | 14.0 | 4032 | 1.5790 | 0.7999 | |
|
| 0.0255 | 15.0 | 4320 | 1.6094 | 0.7994 | |
|
| 0.0098 | 16.0 | 4608 | 1.5758 | 0.8006 | |
|
| 0.0098 | 17.0 | 4896 | 1.5326 | 0.8140 | |
|
| 0.0203 | 18.0 | 5184 | 1.6431 | 0.8114 | |
|
| 0.0203 | 19.0 | 5472 | 1.7105 | 0.8072 | |
|
| 0.0104 | 20.0 | 5760 | 1.6353 | 0.8139 | |
|
| 0.0062 | 21.0 | 6048 | 1.6762 | 0.8108 | |
|
| 0.0062 | 22.0 | 6336 | 1.7076 | 0.8106 | |
|
| 0.0088 | 23.0 | 6624 | 1.7887 | 0.8035 | |
|
| 0.0088 | 24.0 | 6912 | 1.7731 | 0.8099 | |
|
| 0.0026 | 25.0 | 7200 | 1.7774 | 0.8111 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|