|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: roberta-base_fold_1_binary_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base_fold_1_binary_v1 |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4984 |
|
- F1: 0.8339 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 288 | 0.3819 | 0.8117 | |
|
| 0.4108 | 2.0 | 576 | 0.3696 | 0.8281 | |
|
| 0.4108 | 3.0 | 864 | 0.4890 | 0.8343 | |
|
| 0.2261 | 4.0 | 1152 | 0.7605 | 0.8298 | |
|
| 0.2261 | 5.0 | 1440 | 0.7754 | 0.8307 | |
|
| 0.1404 | 6.0 | 1728 | 0.7650 | 0.8174 | |
|
| 0.0962 | 7.0 | 2016 | 0.8539 | 0.8315 | |
|
| 0.0962 | 8.0 | 2304 | 1.0770 | 0.8263 | |
|
| 0.0433 | 9.0 | 2592 | 1.1450 | 0.8292 | |
|
| 0.0433 | 10.0 | 2880 | 1.1700 | 0.8205 | |
|
| 0.0344 | 11.0 | 3168 | 1.2376 | 0.8241 | |
|
| 0.0344 | 12.0 | 3456 | 1.2688 | 0.8329 | |
|
| 0.0219 | 13.0 | 3744 | 1.3276 | 0.8283 | |
|
| 0.0123 | 14.0 | 4032 | 1.2930 | 0.8320 | |
|
| 0.0123 | 15.0 | 4320 | 1.4631 | 0.8266 | |
|
| 0.0177 | 16.0 | 4608 | 1.4326 | 0.8270 | |
|
| 0.0177 | 17.0 | 4896 | 1.4770 | 0.8334 | |
|
| 0.0053 | 18.0 | 5184 | 1.5972 | 0.8214 | |
|
| 0.0053 | 19.0 | 5472 | 1.5331 | 0.8327 | |
|
| 0.0045 | 20.0 | 5760 | 1.5487 | 0.8359 | |
|
| 0.0086 | 21.0 | 6048 | 1.4610 | 0.8315 | |
|
| 0.0086 | 22.0 | 6336 | 1.4685 | 0.8353 | |
|
| 0.0071 | 23.0 | 6624 | 1.4933 | 0.8358 | |
|
| 0.0071 | 24.0 | 6912 | 1.4898 | 0.8310 | |
|
| 0.0022 | 25.0 | 7200 | 1.4984 | 0.8339 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|