|
--- |
|
language: en |
|
tags: |
|
- diffusion-models |
|
- medical-imaging |
|
- glioma |
|
- synthetic-data |
|
- MRI |
|
license: mit |
|
datasets: |
|
- BraTS2024 |
|
model-index: |
|
- name: GliomaGen |
|
results: |
|
- task: |
|
type: image-generation |
|
dataset: |
|
name: BraTS2024 Adult Post-Treatment Glioma |
|
type: medical-imaging |
|
metrics: |
|
- name: FID (t1c) |
|
type: frechet-inception-distance |
|
value: 55.2028 ± 3.7446 |
|
- name: FID (t2w) |
|
type: frechet-inception-distance |
|
value: 54.9974 ± 3.2271 |
|
- name: KID (t1c) |
|
type: kernel-inception-distance |
|
value: 0.0293 ± 0.0019 |
|
- name: MS-SSIM (t1c) |
|
type: multi-scale-structural-similarity |
|
value: 0.7647 ± 0.2106 |
|
--- |
|
|
|
# GliomaGen: Conditional Diffusion for Post-Treatment Glioma MRI Generation |
|
GliomaGen is a generative diffusion model tailored for synthesizing post-treatment glioma MRI images based on anatomical masks. It leverages a modified **Med-DDPM** architecture to create high-fidelity MRI images conditioned on segmented anatomical features. |
|
|
|
## Model Overview |
|
GliomaGen aims to address data scarcity in post-treatment glioma segmentation tasks by expanding existing datasets with synthetic, high-quality MRI volumes. The model takes anatomical masks as input and generates multi-modal MRI scans conditioned on segmentation labels. |
|
|
|
## Model Performance |
|
### **Quantitative Metrics** |
|
| Modality | FID (↓) | KID (↓) | MS-SSIM (↑) | |
|
|----------|--------|--------|-------------| |
|
| t1c | 55.20 ± 3.74 | 0.0293 ± 0.0019 | 0.7647 ± 0.2106 | |
|
| t2w | 54.99 ± 3.23 | 0.0291 ± 0.0010 | 0.6513 ± 0.2881 | |
|
| t1n | 58.46 ± 3.86 | 0.0305 ± 0.0011 | 0.7005 ± 0.2585 | |
|
| t2f | 70.42 ± 4.17 | 0.0370 ± 0.0018 | 0.7842 ± 0.1551 | |
|
|
|
|
|
## Usage |
|
To use GliomaGen for MRI generation, see the [GitHub repository](https://github.com/elijahrenner/gliomagen). |
|
|
|
## BraTS 2024 Adult Post-Treatment Glioma-Synthetic |
|
Alongisde GliomaGen, a synthetic dataset of $N=2124$ MR images is released on HuggingFace. |