eeshclusive's picture
Training complete
8e79229
|
raw
history blame
2.38 kB
metadata
base_model: allenai/scibert_scivocab_cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: scibert-finetuned-ner
    results: []

scibert-finetuned-ner

This model is a fine-tuned version of allenai/scibert_scivocab_cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4445
  • Precision: 0.3974
  • Recall: 0.3404
  • F1: 0.3667
  • Accuracy: 0.9140

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 121 0.5694 0.0808 0.0411 0.0545 0.8648
No log 2.0 242 0.4878 0.3169 0.1277 0.1820 0.9020
No log 3.0 363 0.4121 0.3422 0.2199 0.2677 0.9097
No log 4.0 484 0.4240 0.4273 0.2624 0.3251 0.9147
0.4235 5.0 605 0.3974 0.4187 0.2922 0.3442 0.9159
0.4235 6.0 726 0.4125 0.4146 0.3064 0.3524 0.9140
0.4235 7.0 847 0.4235 0.3713 0.3191 0.3432 0.9136
0.4235 8.0 968 0.4330 0.3794 0.3348 0.3557 0.9132
0.1633 9.0 1089 0.4481 0.3926 0.3319 0.3597 0.9133
0.1633 10.0 1210 0.4445 0.3974 0.3404 0.3667 0.9140

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1