File size: 2,181 Bytes
d2f179e c1eaecc d2f179e c1eaecc d2f179e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: category-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# category-classifier
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7933
- F1: 0.7172
- Accuracy: 0.7212
- F1 Ai: 0.6154
- F1 Programming: 0.6715
- F1 Science & engineering: 0.6393
- F1 Tech: 0.4259
- F1 Rejected: 0.8158
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | F1 Ai | F1 Programming | F1 Science & engineering | F1 Tech | F1 Rejected |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:------:|:--------------:|:------------------------:|:-------:|:-----------:|
| 0.587 | 1.0 | 1881 | 0.6882 | 0.7150 | 0.7167 | 0.6565 | 0.6787 | 0.6900 | 0.4046 | 0.7984 |
| 0.3324 | 2.0 | 3762 | 0.7463 | 0.7237 | 0.7293 | 0.6492 | 0.6987 | 0.6517 | 0.4044 | 0.8179 |
| 0.1291 | 3.0 | 5643 | 1.7933 | 0.7172 | 0.7212 | 0.6154 | 0.6715 | 0.6393 | 0.4259 | 0.8158 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.2.2
- Datasets 3.1.0
- Tokenizers 0.21.0
|