category-classifier
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6971
- F1: 0.7660
- Accuracy: 0.7704
- F1 Ai: 0.6670
- F1 Programming: 0.6985
- F1 Science & engineering: 0.7482
- F1 Tech: 0.4973
- F1 Rejected: 0.8520
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | F1 Ai | F1 Programming | F1 Science & engineering | F1 Tech | F1 Rejected |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.5809 | 1.0 | 3361 | 0.5636 | 0.7738 | 0.7779 | 0.6961 | 0.7271 | 0.7535 | 0.5003 | 0.8534 |
| 0.3134 | 2.0 | 6722 | 0.6732 | 0.7776 | 0.7798 | 0.6933 | 0.7175 | 0.7577 | 0.5315 | 0.8555 |
| 0.3467 | 3.0 | 10083 | 1.6971 | 0.7660 | 0.7704 | 0.6670 | 0.6985 | 0.7482 | 0.4973 | 0.8520 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.2.2
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for drcoool/category-classifier
Base model
answerdotai/ModernBERT-base