Transformers documentation

VideoLLaMA3

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.57.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

This model was released on 2025-01-22 and added to Hugging Face Transformers on 2025-10-13.

VideoLLaMA3

PyTorch FlashAttention

Overview

The VideoLLaMA3 model is a major update to VideoLLaMA2 from Alibaba DAMO Academy.

The abstract from the paper is as following:

In this paper, we propose VideoLLaMA 3, a more advanced multimodal foundation model for image and video understanding. The core design philosophy of VideoLLaMA3 is vision-centric. The meaning of “vision-centric” is two-fold: the vision-centric training paradigm and vision-centric framework design. The key insight of our vision-centric training paradigm is that high-quality image-text data is crucial for both image and video understanding. Instead of preparing massive video-text datasets, we focus on constructing large-scale, high-quality image-text datasets. VideoLLaMA3 has four training stages: 1) Vision Encoder Adaptation, which enables the vision encoder to accept images of variable resolutions as input; 2) Vision-Language Alignment, which jointly tunes the vision encoder, projector, and LLM with large-scale image-text data covering multiple types (including scene images, documents, and charts) as well as text-only data. 3) Multi-task Fine-tuning, which incorporates image-text SFT data for downstream tasks and video-text data to establish a foundation for video understanding. 4) Video-centric Fine-tuning, which further improves the model’s capability in video understanding. As for the framework design, to better capture fine-grained details in images, the pretrained vision encoder is adapted to encode images of varying sizes into vision tokens with corresponding numbers, rather than a fixed number of tokens. For video inputs, we reduce the number of vision tokens according to their similarity so that the representation of videos will be more precise and compact. Benefiting from vision-centric designs, VideoLLaMA3 achieves compelling performances in both image and video understanding benchmarks.

drawing VideoLLaMA3 architecture. Taken from the technical report.

This model was contributed by lkhl.

Usage example

Single Media inference

The model can accept both images and videos as input. Here’s an example code for inference.

import torch
from transformers import VideoLlama3ForConditionalGeneration, AutoTokenizer, AutoProcessor

# Load the model in half-precision on the available device(s)
model = VideoLlama3ForConditionalGeneration.from_pretrained("lkhl/VideoLLaMA3-2B-Image-HF", device_map="auto")
processor = AutoProcessor.from_pretrained("lkhl/VideoLLaMA3-2B-Image-HF")


conversation = [
    {
        "role":"user",
        "content":[
            {"type": "image", "image": "https://github.com/DAMO-NLP-SG/VideoLLaMA3/raw/refs/heads/main/assets/sora.png"},
            {"type": "text", "text": "Describe this image."}
        ]
    }
]

inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt"
).to(model.device)

# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)



# Video
conversation = [
    {
        "role": "user",
        "content": [
            {"type": "video", "video": "https://github.com/DAMO-NLP-SG/VideoLLaMA3/raw/refs/heads/main/assets/cat_and_chicken.mp4"},
            {"type": "text", "text": "What happened in the video?"},
        ],
    }
]

inputs = processor.apply_chat_template(
    conversation,
    fps=1,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt"
).to(model.device)


# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)

Batch Mixed Media Inference

The model can batch inputs composed of mixed samples of various types such as images, videos, and text. Here is an example.

# Image
conversation1 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "https://github.com/DAMO-NLP-SG/VideoLLaMA3/raw/refs/heads/main/assets/sora.png"},
            {"type": "text", "text": "Describe this image."}
        ]
    }
]

# Video
conversation2 = [
    {
        "role": "user",
        "content": [
            {"type": "video", "video": "https://github.com/DAMO-NLP-SG/VideoLLaMA3/raw/refs/heads/main/assets/cat_and_chicken.mp4"},
            {"type": "text", "text": "What happened in the video?"},
        ],
    }
]

# Text
conversation3 = [
    {
        "role": "user",
        "content": "What color is a banana?"
    }
]


conversations = [conversation1, conversation2, conversation3]
# Preparation for batch inference
inputs = processor.apply_chat_template(
    conversations,
    fps=1,
    add_generation_prompt=True,
    tokenize=True,
    padding=True,
    padding_side="left",
    return_dict=True,
    return_tensors="pt"
).to(model.device)


# Batch Inference
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)

Flash-Attention 2 to speed up generation

First, make sure to install the latest version of Flash Attention 2:

pip install -U flash-attn --no-build-isolation

Also, you should have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the flash attention repository. FlashAttention-2 can only be used when a model is loaded in torch.float16 or torch.bfloat16.

To load and run a model using Flash Attention-2, simply add attn_implementation="flash_attention_2" when loading the model as follows:

from transformers import VideoLlama3ForConditionalGeneration

model = VideoLlama3ForConditionalGeneration.from_pretrained(
    "lkhl/VideoLLaMA3-2B-Image-HF", 
    dtype=torch.bfloat16, 
    attn_implementation="flash_attention_2",
)

VideoLlama3Config

class transformers.VideoLlama3Config

< >

( text_config = None vision_config = None image_token_id = 151655 video_token_id = 151656 **kwargs )

Parameters

  • text_config (Union[PreTrainedConfig, dict], optional, defaults to Qwen2Config) — The config object or dictionary of the text backbone.
  • vision_config (Union[PreTrainedConfig, dict], optional, defaults to VideoLlama3VisionConfig) — The config object or dictionary of the vision backbone.
  • image_token_id (int, optional, defaults to 151655) — The image token index to encode the image prompt.
  • video_token_id (int, optional, defaults to 151656) — The video token index to encode the image prompt.

This is the configuration class to store the configuration of a VideoLlama3Model. It is used to instantiate a VideoLLaMA3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of VideoLLaMA3-2B lkhl/VideoLLaMA3-2B-Image-HF.

VideoLlama3VisionConfig

class transformers.VideoLlama3VisionConfig

< >

( hidden_size = 768 intermediate_size = 3072 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 patch_size = 16 hidden_act = 'gelu_pytorch_tanh' layer_norm_eps = 1e-06 attention_dropout = 0.0 initializer_range = 0.02 **kwargs )

Parameters

  • hidden_size (int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
  • intermediate_size (int, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
  • num_hidden_layers (int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
  • num_attention_heads (int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
  • num_channels (int, optional, defaults to 3) — Number of channels in the input images.
  • patch_size (int, optional, defaults to 16) — The size (resolution) of each patch.
  • hidden_act (str or function, optional, defaults to "gelu_pytorch_tanh") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" "quick_gelu" are supported.
  • layer_norm_eps (float, optional, defaults to 1e-06) — The epsilon used by the layer normalization layers.
  • attention_dropout (float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.
  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

This is the configuration class to store the configuration of a VideoLlama3VisionModel. It is used to instantiate a VideoLLaMA3 vision encoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of VideoLLaMA3-2B lkhl/VideoLLaMA3-2B-Image-HF.

VideoLlama3ImageProcessor

class transformers.VideoLlama3ImageProcessor

< >

( do_resize: bool = True size: typing.Optional[dict[str, int]] = None resample: Resampling = <Resampling.BICUBIC: 3> do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None do_convert_rgb: bool = True min_pixels: typing.Optional[int] = None max_pixels: typing.Optional[int] = None patch_size: int = 14 temporal_patch_size: int = 1 merge_size: int = 1 **kwargs )

Parameters

  • do_resize (bool, optional, defaults to True) — Whether to resize the image’s (height, width) dimensions.
  • size (dict[str, int], optional, defaults to {"shortest_edge" -- 56 * 56, "longest_edge": 28 * 28 * 1280}): Size of the image after resizing. shortest_edge and longest_edge keys must be present.
  • resample (PILImageResampling, optional, defaults to Resampling.BICUBIC) — Resampling filter to use when resizing the image.
  • do_rescale (bool, optional, defaults to True) — Whether to rescale the image by the specified scale rescale_factor.
  • rescale_factor (int or float, optional, defaults to 1/255) — Scale factor to use if rescaling the image.
  • do_normalize (bool, optional, defaults to True) — Whether to normalize the image.
  • image_mean (float or list[float], optional, defaults to [0.48145466, 0.4578275, 0.40821073]) — Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
  • image_std (float or list[float], optional, defaults to [0.26862954, 0.26130258, 0.27577711]) — Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
  • do_convert_rgb (bool, optional, defaults to True) — Whether to convert the image to RGB.
  • min_pixels (int, optional, defaults to 56 * 56) — The min pixels of the image to resize the image.
  • max_pixels (int, optional, defaults to 28 * 28 * 1280) — The max pixels of the image to resize the image.
  • patch_size (int, optional, defaults to 14) — The spatial patch size of the vision encoder.
  • temporal_patch_size (int, optional, defaults to 1) — The temporal patch size of the vision encoder.
  • merge_size (int, optional, defaults to 1) — The merge size of the vision encoder to llm encoder.

Constructs a VideoLLaMA3 image processor that dynamically resizes images based on the original images.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] videos: typing.Union[list['PIL.Image.Image'], numpy.ndarray, ForwardRef('torch.Tensor'), list[numpy.ndarray], list['torch.Tensor'], list[list['PIL.Image.Image']], list[list[numpy.ndarray]], list[list['torch.Tensor']], transformers.video_utils.URL, list[transformers.video_utils.URL], list[list[transformers.video_utils.URL]], transformers.video_utils.Path, list[transformers.video_utils.Path], list[list[transformers.video_utils.Path]], NoneType] = None do_resize: typing.Optional[bool] = None size: typing.Optional[dict[str, int]] = None min_pixels: typing.Optional[int] = None max_pixels: typing.Optional[int] = None resample: typing.Optional[PIL.Image.Resampling] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None patch_size: typing.Optional[int] = None temporal_patch_size: typing.Optional[int] = None merge_size: typing.Optional[int] = None do_convert_rgb: typing.Optional[bool] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • videos (VideoInput) — Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If passing in videos with pixel values between 0 and 1, set do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.
  • size (dict[str, int], optional, defaults to self.size) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio.
  • resample (int, optional, defaults to self.resample) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or list[float], optional, defaults to self.image_mean) — Image mean to use for normalization. Only has an effect if do_normalize is set to True.
  • image_std (float or list[float], optional, defaults to self.image_std) — Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.
  • min_pixels (int, optional, defaults to self.min_pixels) — The min pixels of the image to resize the image.
  • max_pixels (int, optional, defaults to self.max_pixels) — The max pixels of the image to resize the image.
  • patch_size (int, optional, defaults to self.patch_size) — The spatial patch size of the vision encoder.
  • temporal_patch_size (int, optional, defaults to self.temporal_patch_size) — The temporal patch size of the vision encoder.
  • merge_size (int, optional, defaults to self.merge_size) — The merge size of the vision encoder to llm encoder.
  • do_convert_rgb (bool, optional, defaults to self.do_convert_rgb) — Whether to convert the image to RGB.
  • return_tensors (str or TensorType, optional) — The type of tensors to return. Can be one of:
    • Unset: Return a list of np.ndarray.
    • TensorType.PYTORCH or 'pt': Return a batch of type torch.Tensor.
    • TensorType.NUMPY or 'np': Return a batch of type np.ndarray.
  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • Unset: Use the channel dimension format of the input image.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.

VideoLlama3VideoProcessor

class transformers.VideoLlama3VideoProcessor

< >

( **kwargs: typing_extensions.Unpack[transformers.models.video_llama_3.video_processing_video_llama_3.VideoLlama3VideoProcessorInitKwargs] )

Parameters

  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the video’s (height, width) dimensions to the specified size. Can be overridden by the do_resize parameter in the preprocess method.
  • size (dict, optional, defaults to self.size) — Size of the output video after resizing. Can be overridden by the size parameter in the preprocess method.
  • size_divisor (int, optional, defaults to self.size_divisor) — The size by which to make sure both the height and width can be divided.
  • default_to_square (bool, optional, defaults to self.default_to_square) — Whether to default to a square video when resizing, if size is an int.
  • resample (PILImageResampling, optional, defaults to self.resample) — Resampling filter to use if resizing the video. Only has an effect if do_resize is set to True. Can be overridden by the resample parameter in the preprocess method.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the video to the specified crop_size. Can be overridden by do_center_crop in the preprocess method.
  • crop_size (dict[str, int] optional, defaults to self.crop_size) — Size of the output video after applying center_crop. Can be overridden by crop_size in the preprocess method.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the video by the specified scale rescale_factor. Can be overridden by the do_rescale parameter in the preprocess method.
  • rescale_factor (int or float, optional, defaults to self.rescale_factor) — Scale factor to use if rescaling the video. Only has an effect if do_rescale is set to True. Can be overridden by the rescale_factor parameter in the preprocess method.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the video. Can be overridden by the do_normalize parameter in the preprocess method. Can be overridden by the do_normalize parameter in the preprocess method.
  • image_mean (float or list[float], optional, defaults to self.image_mean) — Mean to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by the image_mean parameter in the preprocess method. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or list[float], optional, defaults to self.image_std) — Standard deviation to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by the image_std parameter in the preprocess method. Can be overridden by the image_std parameter in the preprocess method.
  • do_convert_rgb (bool, optional, defaults to self.image_std) — Whether to convert the video to RGB.
  • video_metadata (VideoMetadata, optional) — Metadata of the video containing information about total duration, fps and total number of frames.
  • do_sample_frames (int, optional, defaults to self.do_sample_frames) — Whether to sample frames from the video before processing or to process the whole video.
  • num_frames (int, optional, defaults to self.num_frames) — Maximum number of frames to sample when do_sample_frames=True.
  • fps (int or float, optional, defaults to self.fps) — Target frames to sample per second when do_sample_frames=True.
  • return_tensors (str or TensorType, optional) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors.
  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output video. Can be one of:

    • "channels_first" or ChannelDimension.FIRST: video in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: video in (height, width, num_channels) format.
    • Unset: Use the channel dimension format of the input video.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input video. If unset, the channel dimension format is inferred from the input video. Can be one of:

    • "channels_first" or ChannelDimension.FIRST: video in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: video in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: video in (height, width) format.
  • device (torch.device, optional) — The device to process the videos on. If unset, the device is inferred from the input videos.
  • return_metadata (bool, optional) — Whether to return video metadata or not.
  • min_pixels (int, optional, defaults to 56 * 56) — The min pixels of the image to resize the image.
  • max_pixels (int, optional, defaults to 28 * 28 * 1280) — The max pixels of the image to resize the image.
  • patch_size (int, optional, defaults to 14) — The spacial patch size of the vision encoder.
  • temporal_patch_size (int, optional, defaults to 2) — The temporal patch size of the vision encoder.
  • merge_size (int, optional, defaults to 2) — The merge size of the vision encoder to llm encoder.
  • min_frames (int, optional, defaults to 4) — The minimum number of frames that can be sampled.
  • max_frames (int, optional, defaults to 768) — The maximum number of frames that can be sampled.

Constructs a fast Qwen2-VL image processor that dynamically resizes videos based on the original videos.

preprocess

< >

( videos: typing.Union[list['PIL.Image.Image'], numpy.ndarray, ForwardRef('torch.Tensor'), list[numpy.ndarray], list['torch.Tensor'], list[list['PIL.Image.Image']], list[list[numpy.ndarray]], list[list['torch.Tensor']], transformers.video_utils.URL, list[transformers.video_utils.URL], list[list[transformers.video_utils.URL]], transformers.video_utils.Path, list[transformers.video_utils.Path], list[list[transformers.video_utils.Path]]] **kwargs: typing_extensions.Unpack[transformers.processing_utils.VideosKwargs] )

Parameters

  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the video’s (height, width) dimensions to the specified size. Can be overridden by the do_resize parameter in the preprocess method.
  • size (dict, optional, defaults to self.size) — Size of the output video after resizing. Can be overridden by the size parameter in the preprocess method.
  • size_divisor (int, optional, defaults to self.size_divisor) — The size by which to make sure both the height and width can be divided.
  • default_to_square (bool, optional, defaults to self.default_to_square) — Whether to default to a square video when resizing, if size is an int.
  • resample (PILImageResampling, optional, defaults to self.resample) — Resampling filter to use if resizing the video. Only has an effect if do_resize is set to True. Can be overridden by the resample parameter in the preprocess method.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the video to the specified crop_size. Can be overridden by do_center_crop in the preprocess method.
  • crop_size (dict[str, int] optional, defaults to self.crop_size) — Size of the output video after applying center_crop. Can be overridden by crop_size in the preprocess method.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the video by the specified scale rescale_factor. Can be overridden by the do_rescale parameter in the preprocess method.
  • rescale_factor (int or float, optional, defaults to self.rescale_factor) — Scale factor to use if rescaling the video. Only has an effect if do_rescale is set to True. Can be overridden by the rescale_factor parameter in the preprocess method.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the video. Can be overridden by the do_normalize parameter in the preprocess method. Can be overridden by the do_normalize parameter in the preprocess method.
  • image_mean (float or list[float], optional, defaults to self.image_mean) — Mean to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by the image_mean parameter in the preprocess method. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or list[float], optional, defaults to self.image_std) — Standard deviation to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by the image_std parameter in the preprocess method. Can be overridden by the image_std parameter in the preprocess method.
  • do_convert_rgb (bool, optional, defaults to self.image_std) — Whether to convert the video to RGB.
  • video_metadata (VideoMetadata, optional) — Metadata of the video containing information about total duration, fps and total number of frames.
  • do_sample_frames (int, optional, defaults to self.do_sample_frames) — Whether to sample frames from the video before processing or to process the whole video.
  • num_frames (int, optional, defaults to self.num_frames) — Maximum number of frames to sample when do_sample_frames=True.
  • fps (int or float, optional, defaults to self.fps) — Target frames to sample per second when do_sample_frames=True.
  • return_tensors (str or TensorType, optional) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors.
  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output video. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: video in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: video in (height, width, num_channels) format.
    • Unset: Use the channel dimension format of the input video.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input video. If unset, the channel dimension format is inferred from the input video. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: video in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: video in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: video in (height, width) format.
  • device (torch.device, optional) — The device to process the videos on. If unset, the device is inferred from the input videos.
  • return_metadata (bool, optional) — Whether to return video metadata or not.

VideoLlama3ImageProcessorFast

class transformers.VideoLlama3ImageProcessorFast

< >

( **kwargs: typing_extensions.Unpack[transformers.models.video_llama_3.image_processing_video_llama_3.VideoLlama3ImageProcessorKwargs] )

Constructs a fast Video Llama 3 image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] videos: typing.Union[list['PIL.Image.Image'], numpy.ndarray, ForwardRef('torch.Tensor'), list[numpy.ndarray], list['torch.Tensor'], list[list['PIL.Image.Image']], list[list[numpy.ndarray]], list[list['torch.Tensor']], transformers.video_utils.URL, list[transformers.video_utils.URL], list[list[transformers.video_utils.URL]], transformers.video_utils.Path, list[transformers.video_utils.Path], list[list[transformers.video_utils.Path]], NoneType] = None **kwargs: typing_extensions.Unpack[transformers.models.video_llama_3.image_processing_video_llama_3.VideoLlama3ImageProcessorKwargs] ) <class 'transformers.feature_extraction_utils.BatchFeature'>

Parameters

  • images (Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']]) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • videos (Union[list['PIL.Image.Image'], numpy.ndarray, torch.Tensor, list[numpy.ndarray], list['torch.Tensor'], list[list['PIL.Image.Image']], list[list[numpy.ndarray]], list[list['torch.Tensor']], ~video_utils.URL, list[~video_utils.URL], list[list[~video_utils.URL]], ~video_utils.Path, list[~video_utils.Path], list[list[~video_utils.Path]], NoneType]) — Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If passing in videos with pixel values between 0 and 1, set do_rescale=False.
  • do_convert_rgb (bool, optional) — Whether to convert the image to RGB.
  • do_resize (bool, optional) — Whether to resize the image.
  • size (Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — Describes the maximum input dimensions to the model.
  • crop_size (Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — Size of the output image after applying center_crop.
  • resample (Annotated[Union[PILImageResampling, int, NoneType], None]) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.
  • do_rescale (bool, optional) — Whether to rescale the image.
  • rescale_factor (float, optional) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional) — Whether to normalize the image.
  • image_mean (Union[float, list[float], tuple[float, ...], NoneType]) — Image mean to use for normalization. Only has an effect if do_normalize is set to True.
  • image_std (Union[float, list[float], tuple[float, ...], NoneType]) — Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.
  • do_pad (bool, optional) — Whether to pad the image. Padding is done either to the largest size in the batch or to a fixed square size per image. The exact padding strategy depends on the model.
  • pad_size (Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — The size in {"height": int, "width" int} to pad the images to. Must be larger than any image size provided for preprocessing. If pad_size is not provided, images will be padded to the largest height and width in the batch. Applied only when do_pad=True.
  • do_center_crop (bool, optional) — Whether to center crop the image.
  • data_format (Union[str, ~image_utils.ChannelDimension, NoneType]) — Only ChannelDimension.FIRST is supported. Added for compatibility with slow processors.
  • input_data_format (Union[str, ~image_utils.ChannelDimension, NoneType]) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.
  • device (Annotated[str, None], optional) — The device to process the images on. If unset, the device is inferred from the input images.
  • return_tensors (Annotated[Union[str, ~utils.generic.TensorType, NoneType], None]) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors.
  • disable_grouping (bool, optional) — Whether to disable grouping of images by size to process them individually and not in batches. If None, will be set to True if the images are on CPU, and False otherwise. This choice is based on empirical observations, as detailed here: https://github.com/huggingface/transformers/pull/38157
  • min_pixels (int, optional, defaults to 56 * 56) — The min pixels of the image to resize the image.
  • max_pixels (int, optional, defaults to 28 * 28 * 1280) — The max pixels of the image to resize the image.
  • patch_size (int, optional, defaults to 14) — The spatial patch size of the vision encoder.
  • temporal_patch_size (int, optional, defaults to 2) — The temporal patch size of the vision encoder.
  • merge_size (int, optional, defaults to 2) — The merge size of the vision encoder to llm encoder.

Returns

<class 'transformers.feature_extraction_utils.BatchFeature'>

  • data (dict, optional) — Dictionary of lists/arrays/tensors returned by the call/pad methods (‘input_values’, ‘attention_mask’, etc.).
  • tensor_type (Union[None, str, TensorType], optional) — You can give a tensor_type here to convert the lists of integers in PyTorch/Numpy Tensors at initialization.

VideoLlama3Processor

class transformers.VideoLlama3Processor

< >

( image_processor = None tokenizer = None video_processor = None chat_template = None **kwargs )

Parameters

  • image_processor (VideoLlama3ImageProcessor, optional) — The image processor is a required input.
  • tokenizer (Qwen2Tokenizer, optional) — The tokenizer is a required input.
  • video_processor (VideoLlama3VideoProcessor, optional) — The video processor is a required input.
  • chat_template (str, optional) — A Jinja template which will be used to convert lists of messages

Constructs a VideoLLaMA3 processor which wraps a VideoLLaMA3 image processor and a Qwen2 tokenizer into a single processor. VideoLlama3Processor offers all the functionalities of VideoLlama3ImageProcessor and Qwen2Tokenizer. See the __call__() and decode() for more information.

post_process_image_text_to_text

< >

( generated_outputs skip_special_tokens = True clean_up_tokenization_spaces = False **kwargs ) list[str]

Parameters

  • generated_outputs (torch.Tensor or np.ndarray) — The output of the model generate function. The output is expected to be a tensor of shape (batch_size, sequence_length) or (sequence_length,).
  • skip_special_tokens (bool, optional, defaults to True) — Whether or not to remove special tokens in the output. Argument passed to the tokenizer’s batch_decode method.
  • clean_up_tokenization_spaces (bool, optional, defaults to False) — Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer’s batch_decode method.
  • **kwargs — Additional arguments to be passed to the tokenizer’s batch_decode method.

Returns

list[str]

The decoded text.

Post-process the output of the model to decode the text.

VideoLlama3Model

class transformers.VideoLlama3Model

< >

( config: VideoLlama3Config )

Parameters

  • config (VideoLlama3Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare Video Llama 3 Model outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None pixel_values: typing.Optional[torch.Tensor] = None image_grid_thw: typing.Optional[torch.LongTensor] = None image_merge_sizes: typing.Optional[torch.LongTensor] = None pixel_values_videos: typing.Optional[torch.FloatTensor] = None video_grid_thw: typing.Optional[torch.LongTensor] = None video_merge_sizes: typing.Optional[torch.LongTensor] = None video_compression_mask: typing.Optional[torch.BoolTensor] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] )

image_grid_thw (torch.LongTensor of shape (num_images, 3), optional): The temporal, height and width of feature shape of each image in LLM. image_merge_sizes (torch.Tensor of shape (num_images,)): The spatial downsampling ratio of each image feature. video_grid_thw (torch.Tensor of shape (num_videos, 3)): The temporal, height and width of feature shape of each video before vision encoder. video_merge_sizes (torch.Tensor of shape (num_videos,)): The spatial downsampling ratio of each video feature. video_compression_mask (torch.BoolTensor of shape (num_video_features,), optional): The mask to indicate which video features are kept after token compression.

VideoLlama3VisionModel

class transformers.VideoLlama3VisionModel

< >

( config: VideoLlama3VisionConfig )

forward

< >

( pixel_values: Tensor grid_thw: Tensor merge_sizes: Tensor **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.Tensor of shape (batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using VideoLlama3ImageProcessor. See VideoLlama3ImageProcessor.call() for details (processor_class uses VideoLlama3ImageProcessor for processing images).
  • grid_thw (torch.LongTensor of shape (num_images_or_videos, 3)) — The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values.
  • merge_sizes (torch.Tensor of shape (num_images_or_videos,)) — The spatial downsampling ratio of each image or video feature.

Returns

transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (VideoLlama3Config) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The VideoLlama3VisionModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

VideoLlama3ForConditionalGeneration

class transformers.VideoLlama3ForConditionalGeneration

< >

( config: VideoLlama3Config )

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None pixel_values: typing.Optional[torch.Tensor] = None image_grid_thw: typing.Optional[torch.LongTensor] = None image_merge_sizes: typing.Optional[torch.LongTensor] = None pixel_values_videos: typing.Optional[torch.FloatTensor] = None video_grid_thw: typing.Optional[torch.LongTensor] = None video_merge_sizes: typing.Optional[torch.LongTensor] = None video_compression_mask: typing.Optional[torch.BoolTensor] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) transformers.models.video_llama_3.modeling_video_llama_3.VideoLlama3CausalLMOutputWithPast or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    What are position IDs?

  • past_key_values (~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    Only Cache instance is allowed as input, see our kv cache guide. If no past_key_values are passed, DynamicCache will be initialized by default.

    The model will output the same cache format that is fed as input.

    If past_key_values are used, the user is expected to input only unprocessed input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, unprocessed_length) instead of all input_ids of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].
  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • pixel_values (torch.Tensor of shape (batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained using VideoLlama3ImageProcessor. See VideoLlama3ImageProcessor.call() for details (processor_class uses VideoLlama3ImageProcessor for processing images).
  • image_grid_thw (torch.LongTensor of shape (num_images, 3), optional) — The temporal, height and width of feature shape of each image in LLM.
  • image_merge_sizes (torch.Tensor of shape (num_images,)) — The spatial downsampling ratio of each image feature.
  • pixel_values_videos (torch.FloatTensor of shape (batch_size, num_frames, num_channels, frame_size, frame_size), optional) — The tensors corresponding to the input video. Pixel values for videos can be obtained using video_processor_class. See video_processor_class.__call__ for details (processor_class uses video_processor_class for processing videos).
  • video_grid_thw (torch.Tensor of shape (num_videos, 3)) — The temporal, height and width of feature shape of each video before vision encoder.
  • video_merge_sizes (torch.Tensor of shape (num_videos,)) — The spatial downsampling ratio of each video feature.
  • video_compression_mask (torch.BoolTensor of shape (num_video_features,), optional) — The mask to indicate which video features are kept after token compression.
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.

Returns

transformers.models.video_llama_3.modeling_video_llama_3.VideoLlama3CausalLMOutputWithPast or tuple(torch.FloatTensor)

A transformers.models.video_llama_3.modeling_video_llama_3.VideoLlama3CausalLMOutputWithPast or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (VideoLlama3Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (Cache, optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head))

    Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple[torch.FloatTensor], optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple[torch.FloatTensor], optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • image_hidden_states (torch.FloatTensor, optional) — A torch.FloatTensor of size (num_images_features, hidden_size). image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

  • video_hidden_states (torch.FloatTensor, optional) — A torch.FloatTensor of size (num_video_features, hidden_size). video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

The VideoLlama3ForConditionalGeneration forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, VideoLlama3ForConditionalGeneration

>>> model = VideoLlama3ForConditionalGeneration.from_pretrained("lkhl/VideoLLaMA3-2B-Image-HF")
>>> processor = AutoProcessor.from_pretrained("lkhl/VideoLLaMA3-2B-Image-HF")

>>> messages = [
...     {
...         "role": "user", "content": [
...             {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
...             {"type": "text", "text": "Where is the cat standing?"},
...         ]
...     },
... ]

>>> inputs = processor.apply_chat_template(
...     messages,
...     tokenize=True,
...     return_dict=True,
...     return_tensors="pt",
...     add_generation_prompt=True
... )
>>> # Generate
>>> generate_ids = model.generate(**inputs)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True)[0]
Update on GitHub