Agents
Smolagents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change.
To learn more about agents and tools make sure to read the introductory guide. This page contains the API docs for the underlying classes.
Agents
Our agents inherit from MultiStepAgent, which means they can act in multiple steps, each step consisting of one thought, then one tool call and execution. Read more in this conceptual guide.
We provide two types of agents, based on the main Agent
class.
- CodeAgent is the default agent, it writes its tool calls in Python code.
- ToolCallingAgent writes its tool calls in JSON.
Both require arguments model
and list of tools tools
at initialization.
Classes of agents
class smolagents.MultiStepAgent
< source >( tools: typing.List[smolagents.tools.Tool] model: typing.Callable[[typing.List[typing.Dict[str, str]]], smolagents.models.ChatMessage] prompt_templates: typing.Optional[smolagents.agents.PromptTemplates] = None max_steps: int = 6 tool_parser: typing.Optional[typing.Callable] = None add_base_tools: bool = False verbosity_level: LogLevel = <LogLevel.INFO: 1> grammar: typing.Optional[typing.Dict[str, str]] = None managed_agents: typing.Optional[typing.List] = None step_callbacks: typing.Optional[typing.List[typing.Callable]] = None planning_interval: typing.Optional[int] = None name: typing.Optional[str] = None description: typing.Optional[str] = None provide_run_summary: bool = False final_answer_checks: typing.Optional[typing.List[typing.Callable]] = None )
Parameters
- tools (
list[Tool]
) — Tools that the agent can use. - model (
Callable[[list[dict[str, str]]], ChatMessage]
) — Model that will generate the agent’s actions. - prompt_templates (PromptTemplates, optional) — Prompt templates.
- max_steps (
int
, default6
) — Maximum number of steps the agent can take to solve the task. - tool_parser (
Callable
, optional) — Function used to parse the tool calls from the LLM output. - add_base_tools (
bool
, defaultFalse
) — Whether to add the base tools to the agent’s tools. - verbosity_level (
LogLevel
, defaultLogLevel.INFO
) — Level of verbosity of the agent’s logs. - grammar (
dict[str, str]
, optional) — Grammar used to parse the LLM output. - managed_agents (
list
, optional) — Managed agents that the agent can call. - step_callbacks (
list[Callable]
, optional) — Callbacks that will be called at each step. - planning_interval (
int
, optional) — Interval at which the agent will run a planning step. - name (
str
, optional) — Necessary for a managed agent only - the name by which this agent can be called. - description (
str
, optional) — Necessary for a managed agent only - the description of this agent. - provide_run_summary (
bool
, optional) — Whether to provide a run summary when called as a managed agent. - final_answer_checks (
list
, optional) — List of Callables to run before returning a final answer for checking validity.
Agent class that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of action (given by the LLM) and observation (obtained from the environment).
execute_tool_call
< source >( tool_name: str arguments: typing.Union[typing.Dict[str, str], str] )
Execute tool with the provided input and returns the result. This method replaces arguments with the actual values from the state if they refer to state variables.
extract_action
< source >( model_output: str split_token: str )
Parse action from the LLM output
Loads an agent from a local folder
from_hub
< source >( repo_id: str token: typing.Optional[str] = None trust_remote_code: bool = False **kwargs )
Parameters
- repo_id (
str
) — The name of the repo on the Hub where your tool is defined. - token (
str
, optional) — The token to identify you on hf.co. If unset, will use the token generated when runninghuggingface-cli login
(stored in~/.huggingface
). - trust_remote_code(
bool
, optional, defaults to False) — This flags marks that you understand the risk of running remote code and that you trust this tool. If not setting this to True, loading the tool from Hub will fail. - kwargs (additional keyword arguments, optional) —
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
cache_dir
,revision
,subfolder
) will be used when downloading the files for your agent, and the others will be passed along to its init.
Loads an agent defined on the Hub.
Loading a tool from the Hub means that you’ll download the tool and execute it locally. ALWAYS inspect the tool you’re downloading before loading it within your runtime, as you would do when installing a package using pip/npm/apt.
To be implemented in child classes
planning_step
< source >( task is_first_step: bool step: int )
Used periodically by the agent to plan the next steps to reach the objective.
provide_final_answer
< source >( task: str images: typing.Optional[list[str]] ) → str
Provide the final answer to the task, based on the logs of the agent’s interactions.
push_to_hub
< source >( repo_id: str commit_message: str = 'Upload agent' private: typing.Optional[bool] = None token: typing.Union[bool, str, NoneType] = None create_pr: bool = False )
Parameters
- repo_id (
str
) — The name of the repository you want to push to. It should contain your organization name when pushing to a given organization. - commit_message (
str
, optional, defaults to"Upload agent"
) — Message to commit while pushing. - private (
bool
, optional, defaults toNone
) — Whether to make the repo private. IfNone
, the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists. - token (
bool
orstr
, optional) — The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when runninghuggingface-cli login
(stored in~/.huggingface
). - create_pr (
bool
, optional, defaults toFalse
) — Whether to create a PR with the uploaded files or directly commit.
Upload the agent to the Hub.
replay
< source >( detailed: bool = False )
Prints a pretty replay of the agent’s steps.
run
< source >( task: str stream: bool = False reset: bool = True images: typing.Optional[typing.List[str]] = None additional_args: typing.Optional[typing.Dict] = None )
Parameters
- task (
str
) — Task to perform. - stream (
bool
) — Whether to run in a streaming way. - reset (
bool
) — Whether to reset the conversation or keep it going from previous run. - images (
list[str]
, optional) — Paths to image(s). - additional_args (
dict
) — Any other variables that you want to pass to the agent run, for instance images or dataframes. Give them clear names!
Run the agent for the given task.
save
< source >( output_dir: str relative_path: typing.Optional[str] = None )
Saves the relevant code files for your agent. This will copy the code of your agent in output_dir
as well as autogenerate:
- a
tools
folder containing the logic for each of the tools undertools/{tool_name}.py
. - a
managed_agents
folder containing the logic for each of the managed agents. - an
agent.json
file containing a dictionary representing your agent. - a
prompt.yaml
file containing the prompt templates used by your agent. - an
app.py
file providing a UI for your agent when it is exported to a Space withagent.push_to_hub()
- a
requirements.txt
containing the names of the modules used by your tool (as detected when inspecting its code)
To be implemented in children classes. Should return either None if the step is not final.
Converts agent into a dictionary.
Creates a rich tree visualization of the agent’s structure.
Reads past llm_outputs, actions, and observations or errors from the memory into a series of messages that can be used as input to the LLM. Adds a number of keywords (such as PLAN, error, etc) to help the LLM.
class smolagents.CodeAgent
< source >( tools: typing.List[smolagents.tools.Tool] model: typing.Callable[[typing.List[typing.Dict[str, str]]], smolagents.models.ChatMessage] prompt_templates: typing.Optional[smolagents.agents.PromptTemplates] = None grammar: typing.Optional[typing.Dict[str, str]] = None additional_authorized_imports: typing.Optional[typing.List[str]] = None planning_interval: typing.Optional[int] = None use_e2b_executor: bool = False max_print_outputs_length: typing.Optional[int] = None **kwargs )
Parameters
- tools (
list[Tool]
) — Tools that the agent can use. - model (
Callable[[list[dict[str, str]]], ChatMessage]
) — Model that will generate the agent’s actions. - prompt_templates (PromptTemplates, optional) — Prompt templates.
- grammar (
dict[str, str]
, optional) — Grammar used to parse the LLM output. - additional_authorized_imports (
list[str]
, optional) — Additional authorized imports for the agent. - planning_interval (
int
, optional) — Interval at which the agent will run a planning step. - use_e2b_executor (
bool
, defaultFalse
) — Whether to use the E2B executor for remote code execution. - max_print_outputs_length (
int
, optional) — Maximum length of the print outputs. - **kwargs — Additional keyword arguments.
In this agent, the tool calls will be formulated by the LLM in code format, then parsed and executed.
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result. Returns None if the step is not final.
class smolagents.ToolCallingAgent
< source >( tools: typing.List[smolagents.tools.Tool] model: typing.Callable[[typing.List[typing.Dict[str, str]]], smolagents.models.ChatMessage] prompt_templates: typing.Optional[smolagents.agents.PromptTemplates] = None planning_interval: typing.Optional[int] = None **kwargs )
Parameters
- tools (
list[Tool]
) — Tools that the agent can use. - model (
Callable[[list[dict[str, str]]], ChatMessage]
) — Model that will generate the agent’s actions. - prompt_templates (PromptTemplates, optional) — Prompt templates.
- planning_interval (
int
, optional) — Interval at which the agent will run a planning step. - **kwargs — Additional keyword arguments.
This agent uses JSON-like tool calls, using method model.get_tool_call
to leverage the LLM engine’s tool calling capabilities.
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result. Returns None if the step is not final.
ManagedAgent
This class is deprecated since 1.8.0: now you simply need to pass attributes name
and description
to a normal agent to make it callable by a manager agent.
stream_to_gradio
smolagents.stream_to_gradio
< source >( agent task: str reset_agent_memory: bool = False additional_args: typing.Optional[dict] = None )
Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.
GradioUI
You must have gradio
installed to use the UI. Please run pip install smolagents[gradio]
if it’s not the case.
class smolagents.GradioUI
< source >( agent: MultiStepAgent file_upload_folder: str | None = None )
A one-line interface to launch your agent in Gradio
upload_file
< source >( file file_uploads_log allowed_file_types = ['application/pdf', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', 'text/plain'] )
Handle file uploads, default allowed types are .pdf, .docx, and .txt
Prompts
class smolagents.PromptTemplates
< source >( )
Parameters
- system_prompt (
str
) — System prompt. - planning (PlanningPromptTemplate) — Planning prompt templates.
- managed_agent (ManagedAgentPromptTemplate) — Managed agent prompt templates.
- final_answer (FinalAnswerPromptTemplate) — Final answer prompt templates.
Prompt templates for the agent.
class smolagents.PlanningPromptTemplate
< source >( )
Parameters
- initial_facts (
str
) — Initial facts prompt. - initial_plan (
str
) — Initial plan prompt. - update_facts_pre_messages (
str
) — Update facts pre-messages prompt. - update_facts_post_messages (
str
) — Update facts post-messages prompt. - update_plan_pre_messages (
str
) — Update plan pre-messages prompt. - update_plan_post_messages (
str
) — Update plan post-messages prompt.
Prompt templates for the planning step.
class smolagents.ManagedAgentPromptTemplate
< source >( )
Prompt templates for the managed agent.
class smolagents.FinalAnswerPromptTemplate
< source >( )
Prompt templates for the final answer.