Diffusers documentation
TransformerTemporalModel
TransformerTemporalModel
A Transformer model for video-like data.
TransformerTemporalModel
class diffusers.models.TransformerTemporalModel
< source >( num_attention_heads: int = 16 attention_head_dim: int = 88 in_channels: Optional = None out_channels: Optional = None num_layers: int = 1 dropout: float = 0.0 norm_num_groups: int = 32 cross_attention_dim: Optional = None attention_bias: bool = False sample_size: Optional = None activation_fn: str = 'geglu' norm_elementwise_affine: bool = True double_self_attention: bool = True positional_embeddings: Optional = None num_positional_embeddings: Optional = None )
Parameters
-  num_attention_heads (int, optional, defaults to 16) — The number of heads to use for multi-head attention.
-  attention_head_dim (int, optional, defaults to 88) — The number of channels in each head.
-  in_channels (int, optional) — The number of channels in the input and output (specify if the input is continuous).
-  num_layers (int, optional, defaults to 1) — The number of layers of Transformer blocks to use.
-  dropout (float, optional, defaults to 0.0) — The dropout probability to use.
-  cross_attention_dim (int, optional) — The number ofencoder_hidden_statesdimensions to use.
-  attention_bias (bool, optional) — Configure if theTransformerBlockattention should contain a bias parameter.
-  sample_size (int, optional) — The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings.
-  activation_fn (str, optional, defaults to"geglu") — Activation function to use in feed-forward. Seediffusers.models.activations.get_activationfor supported activation functions.
-  norm_elementwise_affine (bool, optional) — Configure if theTransformerBlockshould use learnable elementwise affine parameters for normalization.
-  double_self_attention (bool, optional) — Configure if eachTransformerBlockshould contain two self-attention layers. positional_embeddings — (str, optional): The type of positional embeddings to apply to the sequence input before passing use. num_positional_embeddings — (int, optional): The maximum length of the sequence over which to apply positional embeddings.
A Transformer model for video-like data.
forward
< source >( hidden_states: Tensor encoder_hidden_states: Optional = None timestep: Optional = None class_labels: LongTensor = None num_frames: int = 1 cross_attention_kwargs: Optional = None return_dict: bool = True  ) → TransformerTemporalModelOutput or tuple
Parameters
-  hidden_states (torch.LongTensorof shape(batch size, num latent pixels)if discrete,torch.Tensorof shape(batch size, channel, height, width)if continuous) — Input hidden_states.
-  encoder_hidden_states ( torch.LongTensorof shape(batch size, encoder_hidden_states dim), optional) — Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention.
-  timestep ( torch.LongTensor, optional) — Used to indicate denoising step. Optional timestep to be applied as an embedding inAdaLayerNorm.
-  class_labels ( torch.LongTensorof shape(batch size, num classes), optional) — Used to indicate class labels conditioning. Optional class labels to be applied as an embedding inAdaLayerZeroNorm.
-  num_frames (int, optional, defaults to 1) — The number of frames to be processed per batch. This is used to reshape the hidden states.
-  cross_attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.
-  return_dict (bool, optional, defaults toTrue) — Whether or not to return a TransformerTemporalModelOutput instead of a plain tuple.
Returns
TransformerTemporalModelOutput or tuple
If return_dict is True, an
TransformerTemporalModelOutput is returned, otherwise a
tuple where the first element is the sample tensor.
The TransformerTemporal forward method.
TransformerTemporalModelOutput
class diffusers.models.transformers.transformer_temporal.TransformerTemporalModelOutput
< source >( sample: Tensor )
The output of TransformerTemporalModel.