Diffusers documentation
Transformer Temporal
Transformer Temporal
A Transformer model for video-like data.
TransformerTemporalModel
class diffusers.models.TransformerTemporalModel
< source >( num_attention_heads: int = 16 attention_head_dim: int = 88 in_channels: Optional = None out_channels: Optional = None num_layers: int = 1 dropout: float = 0.0 norm_num_groups: int = 32 cross_attention_dim: Optional = None attention_bias: bool = False sample_size: Optional = None activation_fn: str = 'geglu' norm_elementwise_affine: bool = True double_self_attention: bool = True positional_embeddings: Optional = None num_positional_embeddings: Optional = None )
Parameters
- num_attention_heads (
int, optional, defaults to 16) — The number of heads to use for multi-head attention. - attention_head_dim (
int, optional, defaults to 88) — The number of channels in each head. - in_channels (
int, optional) — The number of channels in the input and output (specify if the input is continuous). - num_layers (
int, optional, defaults to 1) — The number of layers of Transformer blocks to use. - dropout (
float, optional, defaults to 0.0) — The dropout probability to use. - cross_attention_dim (
int, optional) — The number ofencoder_hidden_statesdimensions to use. - attention_bias (
bool, optional) — Configure if theTransformerBlockattention should contain a bias parameter. - sample_size (
int, optional) — The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings. - activation_fn (
str, optional, defaults to"geglu") — Activation function to use in feed-forward. Seediffusers.models.activations.get_activationfor supported activation functions. - norm_elementwise_affine (
bool, optional) — Configure if theTransformerBlockshould use learnable elementwise affine parameters for normalization. - double_self_attention (
bool, optional) — Configure if eachTransformerBlockshould contain two self-attention layers. positional_embeddings — (str, optional): The type of positional embeddings to apply to the sequence input before passing use. num_positional_embeddings — (int, optional): The maximum length of the sequence over which to apply positional embeddings.
A Transformer model for video-like data.
forward
< source >( hidden_states: FloatTensor encoder_hidden_states: Optional = None timestep: Optional = None class_labels: LongTensor = None num_frames: int = 1 cross_attention_kwargs: Optional = None return_dict: bool = True ) → TransformerTemporalModelOutput or tuple
Parameters
- hidden_states (
torch.LongTensorof shape(batch size, num latent pixels)if discrete,torch.FloatTensorof shape(batch size, channel, height, width)if continuous) — Input hidden_states. - encoder_hidden_states (
torch.LongTensorof shape(batch size, encoder_hidden_states dim), optional) — Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. - timestep (
torch.LongTensor, optional) — Used to indicate denoising step. Optional timestep to be applied as an embedding inAdaLayerNorm. - class_labels (
torch.LongTensorof shape(batch size, num classes), optional) — Used to indicate class labels conditioning. Optional class labels to be applied as an embedding inAdaLayerZeroNorm. - num_frames (
int, optional, defaults to 1) — The number of frames to be processed per batch. This is used to reshape the hidden states. - cross_attention_kwargs (
dict, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor. - return_dict (
bool, optional, defaults toTrue) — Whether or not to return a UNet2DConditionOutput instead of a plain tuple.
Returns
TransformerTemporalModelOutput or tuple
If return_dict is True, an TransformerTemporalModelOutput is
returned, otherwise a tuple where the first element is the sample tensor.
The TransformerTemporal forward method.
TransformerTemporalModelOutput
class diffusers.models.transformer_temporal.TransformerTemporalModelOutput
< source >( sample: FloatTensor )
The output of TransformerTemporalModel.