Diffusers documentation
Inpainting
Inpainting
The Stable Diffusion model can also be applied to inpainting which lets you edit specific parts of an image by providing a mask and a text prompt using Stable Diffusion.
Tips
It is recommended to use this pipeline with checkpoints that have been specifically fine-tuned for inpainting, such as runwayml/stable-diffusion-inpainting. Default text-to-image Stable Diffusion checkpoints, such as runwayml/stable-diffusion-v1-5 are also compatible but they might be less performant.
Make sure to check out the Stable Diffusion Tips section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you’re interested in using one of the official checkpoints for a task, explore the CompVis, Runway, and Stability AI Hub organizations!
StableDiffusionInpaintPipeline
class diffusers.StableDiffusionInpaintPipeline
< source >( vae: typing.Union[diffusers.models.autoencoder_kl.AutoencoderKL, diffusers.models.autoencoder_asym_kl.AsymmetricAutoencoderKL] text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor requires_safety_checker: bool = True )
Parameters
-
vae ([
AutoencoderKL,AsymmetricAutoencoderKL]) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. -
text_encoder (
CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14). -
tokenizer (CLIPTokenizer) —
A
CLIPTokenizerto tokenize text. -
unet (UNet2DConditionModel) —
A
UNet2DConditionModelto denoise the encoded image latents. -
scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unetto denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. -
safety_checker (
StableDiffusionSafetyChecker) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model’s potential harms. -
feature_extractor (CLIPImageProcessor) —
A
CLIPImageProcessorto extract features from generated images; used as inputs to thesafety_checker.
Pipeline for text-guided image inpainting using Stable Diffusion.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- load_textual_inversion() for loading textual inversion embeddings
- load_lora_weights() for loading LoRA weights
- save_lora_weights() for saving LoRA weights
__call__
< source >(
prompt: typing.Union[str, typing.List[str]] = None
image: typing.Union[torch.FloatTensor, PIL.Image.Image] = None
mask_image: typing.Union[torch.FloatTensor, PIL.Image.Image] = None
height: typing.Optional[int] = None
width: typing.Optional[int] = None
strength: float = 1.0
num_inference_steps: int = 50
guidance_scale: float = 7.5
negative_prompt: typing.Union[typing.List[str], str, NoneType] = None
num_images_per_prompt: typing.Optional[int] = 1
eta: float = 0.0
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
latents: typing.Optional[torch.FloatTensor] = None
prompt_embeds: typing.Optional[torch.FloatTensor] = None
negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None
output_type: typing.Optional[str] = 'pil'
return_dict: bool = True
callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None
callback_steps: int = 1
cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None
)
→
StableDiffusionPipelineOutput or tuple
Parameters
-
prompt (
strorList[str], optional) — The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds. -
image (
PIL.Image.Image) —Imageor tensor representing an image batch to be inpainted (which parts of the image to be masked out withmask_imageand repainted according toprompt). -
mask_image (
PIL.Image.Image) —Imageor tensor representing an image batch to maskimage. White pixels in the mask are repainted while black pixels are preserved. Ifmask_imageis a PIL image, it is converted to a single channel (luminance) before use. If it’s a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be(B, H, W, 1). -
height (
int, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. -
width (
int, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. -
strength (
float, optional, defaults to 1.0) — Indicates extent to transform the referenceimage. Must be between 0 and 1.imageis used as a starting point and more noise is added the higher thestrength. The number of denoising steps depends on the amount of noise initially added. Whenstrengthis 1, added noise is maximum and the denoising process runs for the full number of iterations specified innum_inference_steps. A value of 1 essentially ignoresimage. -
num_inference_steps (
int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated bystrength. -
guidance_scale (
float, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the textpromptat the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1. -
negative_prompt (
strorList[str], optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to passnegative_prompt_embedsinstead. Ignored when not using guidance (guidance_scale < 1). -
num_images_per_prompt (
int, optional, defaults to 1) — The number of images to generate per prompt. -
eta (
float, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers. -
generator (
torch.GeneratororList[torch.Generator], optional) — Atorch.Generatorto make generation deterministic. -
latents (
torch.FloatTensor, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator. -
prompt_embeds (
torch.FloatTensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from thepromptinput argument. -
negative_prompt_embeds (
torch.FloatTensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided,negative_prompt_embedsare generated from thenegative_promptinput argument. -
output_type (
str, optional, defaults to"pil") — The output format of the generated image. Choose betweenPIL.Imageornp.array. -
return_dict (
bool, optional, defaults toTrue) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. -
callback (
Callable, optional) — A function that calls everycallback_stepssteps during inference. The function is called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor). -
callback_steps (
int, optional, defaults to 1) — The frequency at which thecallbackfunction is called. If not specified, the callback is called at every step. -
cross_attention_kwargs (
dict, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined inself.processor.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict is True, StableDiffusionPipelineOutput is returned,
otherwise a tuple is returned where the first element is a list with the generated images and the
second element is a list of bools indicating whether the corresponding generated image contains
“not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
>>> import PIL
>>> import requests
>>> import torch
>>> from io import BytesIO
>>> from diffusers import StableDiffusionInpaintPipeline
>>> def download_image(url):
... response = requests.get(url)
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
>>> init_image = download_image(img_url).resize((512, 512))
>>> mask_image = download_image(mask_url).resize((512, 512))
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]enable_attention_slicing
< source >( slice_size: typing.Union[str, int, NoneType] = 'auto' )
Parameters
-
slice_size (
strorint, optional, defaults to"auto") — When"auto", halves the input to the attention heads, so attention will be computed in two steps. If"max", maximum amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices asattention_head_dim // slice_size. In this case,attention_head_dimmust be a multiple ofslice_size.
Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease.
Disable sliced attention computation. If enable_attention_slicing was previously called, attention is
computed in one step.
enable_xformers_memory_efficient_attention
< source >( attention_op: typing.Optional[typing.Callable] = None )
Parameters
-
attention_op (
Callable, optional) — Override the defaultNoneoperator for use asopargument to thememory_efficient_attention()function of xFormers.
Enable memory efficient attention from xFormers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.
Examples:
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)Disable memory efficient attention from xFormers.
load_textual_inversion
< source >( pretrained_model_name_or_path: typing.Union[str, typing.List[str], typing.Dict[str, torch.Tensor], typing.List[typing.Dict[str, torch.Tensor]]] token: typing.Union[str, typing.List[str], NoneType] = None **kwargs )
Parameters
-
pretrained_model_name_or_path (
stroros.PathLikeorList[str or os.PathLike]orDictorList[Dict]) — Can be either one of the following or a list of them:- A string, the model id (for example
sd-concepts-library/low-poly-hd-logos-icons) of a pretrained model hosted on the Hub. - A path to a directory (for example
./my_text_inversion_directory/) containing the textual inversion weights. - A path to a file (for example
./my_text_inversions.pt) containing textual inversion weights. - A torch state dict.
- A string, the model id (for example
-
token (
strorList[str], optional) — Override the token to use for the textual inversion weights. Ifpretrained_model_name_or_pathis a list, thentokenmust also be a list of equal length. -
weight_name (
str, optional) — Name of a custom weight file. This should be used when:- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as
text_inv.bin. - The saved textual inversion file is in the Automatic1111 format.
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as
-
cache_dir (
Union[str, os.PathLike], optional) — Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. -
force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. -
resume_download (
bool, optional, defaults toFalse) — Whether or not to resume downloading the model weights and configuration files. If set toFalse, any incompletely downloaded files are deleted. -
proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, for example,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. -
local_files_only (
bool, optional, defaults toFalse) — Whether to only load local model weights and configuration files or not. If set toTrue, the model won’t be downloaded from the Hub. -
use_auth_token (
stror bool, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue, the token generated fromdiffusers-cli login(stored in~/.huggingface) is used. -
revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. -
subfolder (
str, optional, defaults to"") — The subfolder location of a model file within a larger model repository on the Hub or locally. -
mirror (
str, optional) — Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information.
Load textual inversion embeddings into the text encoder of StableDiffusionPipeline (both 🤗 Diffusers and Automatic1111 formats are supported).
Example:
To load a textual inversion embedding vector in 🤗 Diffusers format:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first (for example from civitAI) and then load the vector
locally:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")load_lora_weights
< source >( pretrained_model_name_or_path_or_dict: typing.Union[str, typing.Dict[str, torch.Tensor]] **kwargs )
Parameters
-
pretrained_model_name_or_path_or_dict (
stroros.PathLikeordict) — See lora_state_dict(). -
kwargs (
dict, optional) — See lora_state_dict().
Load LoRA weights specified in pretrained_model_name_or_path_or_dict into self.unet and
self.text_encoder.
All kwargs are forwarded to self.lora_state_dict.
See lora_state_dict() for more details on how the state dict is loaded.
See load_lora_into_unet() for more details on how the state dict is loaded into
self.unet.
See load_lora_into_text_encoder() for more details on how the state dict is loaded
into self.text_encoder.
save_lora_weights
< source >( save_directory: typing.Union[str, os.PathLike] unet_lora_layers: typing.Dict[str, typing.Union[torch.nn.modules.module.Module, torch.Tensor]] = None text_encoder_lora_layers: typing.Dict[str, torch.nn.modules.module.Module] = None is_main_process: bool = True weight_name: str = None save_function: typing.Callable = None safe_serialization: bool = False )
Parameters
-
save_directory (
stroros.PathLike) — Directory to save LoRA parameters to. Will be created if it doesn’t exist. -
unet_lora_layers (
Dict[str, torch.nn.Module]orDict[str, torch.Tensor]) — State dict of the LoRA layers corresponding to theunet. -
text_encoder_lora_layers (
Dict[str, torch.nn.Module]orDict[str, torch.Tensor]) — State dict of the LoRA layers corresponding to thetext_encoder. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. -
is_main_process (
bool, optional, defaults toTrue) — Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, setis_main_process=Trueonly on the main process to avoid race conditions. -
save_function (
Callable) — The function to use to save the state dictionary. Useful during distributed training when you need to replacetorch.savewith another method. Can be configured with the environment variableDIFFUSERS_SAVE_MODE.
Save the LoRA parameters corresponding to the UNet and text encoder.
Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a
time to the GPU when its forward method is called, and the model remains in GPU until the next model runs.
Memory savings are lower than using enable_sequential_cpu_offload, but performance is much better due to the
iterative execution of the unet.
StableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
< source >( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
-
images (
List[PIL.Image.Image]ornp.ndarray) — List of denoised PIL images of lengthbatch_sizeor NumPy array of shape(batch_size, height, width, num_channels). -
nsfw_content_detected (
List[bool]) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content orNoneif safety checking could not be performed.
Output class for Stable Diffusion pipelines.
FlaxStableDiffusionInpaintPipeline
class diffusers.FlaxStableDiffusionInpaintPipeline
< source >( vae: FlaxAutoencoderKL text_encoder: FlaxCLIPTextModel tokenizer: CLIPTokenizer unet: FlaxUNet2DConditionModel scheduler: typing.Union[diffusers.schedulers.scheduling_ddim_flax.FlaxDDIMScheduler, diffusers.schedulers.scheduling_pndm_flax.FlaxPNDMScheduler, diffusers.schedulers.scheduling_lms_discrete_flax.FlaxLMSDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep_flax.FlaxDPMSolverMultistepScheduler] safety_checker: FlaxStableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor dtype: dtype = <class 'jax.numpy.float32'> )
Parameters
- vae (FlaxAutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder (FlaxCLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
-
tokenizer (CLIPTokenizer) —
A
CLIPTokenizerto tokenize text. -
unet (FlaxUNet2DConditionModel) —
A
FlaxUNet2DConditionModelto denoise the encoded image latents. -
scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unetto denoise the encoded image latents. Can be one ofFlaxDDIMScheduler,FlaxLMSDiscreteScheduler,FlaxPNDMScheduler, orFlaxDPMSolverMultistepScheduler. -
safety_checker (
FlaxStableDiffusionSafetyChecker) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model’s potential harms. -
feature_extractor (CLIPImageProcessor) —
A
CLIPImageProcessorto extract features from generated images; used as inputs to thesafety_checker.
Flax-based pipeline for text-guided image inpainting using Stable Diffusion.
🧪 This is an experimental feature!
This model inherits from FlaxDiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
__call__
< source >(
prompt_ids: array
mask: array
masked_image: array
params: typing.Union[typing.Dict, flax.core.frozen_dict.FrozenDict]
prng_seed: PRNGKeyArray
num_inference_steps: int = 50
height: typing.Optional[int] = None
width: typing.Optional[int] = None
guidance_scale: typing.Union[float, array] = 7.5
latents: array = None
neg_prompt_ids: array = None
return_dict: bool = True
jit: bool = False
)
→
FlaxStableDiffusionPipelineOutput or tuple
Parameters
-
prompt (
strorList[str]) — The prompt or prompts to guide image generation. -
height (
int, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. -
width (
int, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. -
num_inference_steps (
int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated bystrength. -
guidance_scale (
float, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the textpromptat the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1. -
latents (
jnp.array, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents array is generated by sampling using the supplied randomgenerator. -
jit (
bool, defaults toFalse) — Whether to runpmapversions of the generation and safety scoring functions.This argument exists because
__call__is not yet end-to-end pmap-able. It will be removed in a future release. -
return_dict (
bool, optional, defaults toTrue) — Whether or not to return a FlaxStableDiffusionPipelineOutput instead of a plain tuple.
Returns
FlaxStableDiffusionPipelineOutput or tuple
If return_dict is True, FlaxStableDiffusionPipelineOutput is
returned, otherwise a tuple is returned where the first element is a list with the generated images
and the second element is a list of bools indicating whether the corresponding generated image
contains “not-safe-for-work” (nsfw) content.
Function invoked when calling the pipeline for generation.
Examples:
>>> import jax
>>> import numpy as np
>>> from flax.jax_utils import replicate
>>> from flax.training.common_utils import shard
>>> import PIL
>>> import requests
>>> from io import BytesIO
>>> from diffusers import FlaxStableDiffusionInpaintPipeline
>>> def download_image(url):
... response = requests.get(url)
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
>>> init_image = download_image(img_url).resize((512, 512))
>>> mask_image = download_image(mask_url).resize((512, 512))
>>> pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained(
... "xvjiarui/stable-diffusion-2-inpainting"
... )
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
>>> prng_seed = jax.random.PRNGKey(0)
>>> num_inference_steps = 50
>>> num_samples = jax.device_count()
>>> prompt = num_samples * [prompt]
>>> init_image = num_samples * [init_image]
>>> mask_image = num_samples * [mask_image]
>>> prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(
... prompt, init_image, mask_image
... )
# shard inputs and rng
>>> params = replicate(params)
>>> prng_seed = jax.random.split(prng_seed, jax.device_count())
>>> prompt_ids = shard(prompt_ids)
>>> processed_masked_images = shard(processed_masked_images)
>>> processed_masks = shard(processed_masks)
>>> images = pipeline(
... prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True
... ).images
>>> images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))FlaxStableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput
< source >( images: ndarray nsfw_content_detected: typing.List[bool] )
Output class for Flax-based Stable Diffusion pipelines.
“Returns a new object replacing the specified fields with new values.