Diffusers documentation
DPM Discrete Scheduler with ancestral sampling inspired by Karras et. al paper
DPM Discrete Scheduler with ancestral sampling inspired by Karras et. al paper
Overview
Inspired by Karras et. al. Scheduler ported from @crowsonkb’s https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to Katherine Crowson
KDPM2AncestralDiscreteScheduler
class diffusers.KDPM2AncestralDiscreteScheduler
< source >( num_train_timesteps: int = 1000 beta_start: float = 0.00085 beta_end: float = 0.012 beta_schedule: str = 'linear' trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = None prediction_type: str = 'epsilon' )
Parameters
-
num_train_timesteps (
int) — number of diffusion steps used to train the model. beta_start (float): the -
starting
betavalue of inference. beta_end (float) — the finalbetavalue. beta_schedule (str): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose fromlinearorscaled_linear. -
trained_betas (
np.ndarray, optional) — option to pass an array of betas directly to the constructor to bypassbeta_start,beta_endetc. options to clip the variance used when adding noise to the denoised sample. Choose fromfixed_small,fixed_small_log,fixed_large,fixed_large_log,learnedorlearned_range. -
prediction_type (
str, defaultepsilon, optional) — prediction type of the scheduler function, one ofepsilon(predicting the noise of the diffusion process),sample(directly predicting the noisy sample) orv_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
Scheduler created by @crowsonkb in k_diffusion, see: https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188
Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022).
~ConfigMixin takes care of storing all config attributes that are passed in the scheduler’s __init__
function, such as num_train_timesteps. They can be accessed via scheduler.config.num_train_timesteps.
SchedulerMixin provides general loading and saving functionality via the SchedulerMixin.save_pretrained() and
from_pretrained() functions.
scale_model_input
< source >(
sample: FloatTensor
timestep: typing.Union[float, torch.FloatTensor]
)
→
torch.FloatTensor
set_timesteps
< source >( num_inference_steps: int device: typing.Union[str, torch.device] = None num_train_timesteps: typing.Optional[int] = None )
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
step
< source >(
model_output: typing.Union[torch.FloatTensor, numpy.ndarray]
timestep: typing.Union[float, torch.FloatTensor]
sample: typing.Union[torch.FloatTensor, numpy.ndarray]
generator: typing.Optional[torch._C.Generator] = None
return_dict: bool = True
)
→
SchedulerOutput or tuple
Parameters
- Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion —
-
process from the learned model outputs (most often the predicted noise). —
model_output (
torch.FloatTensorornp.ndarray): direct output from learned diffusion model. timestep (int): current discrete timestep in the diffusion chain. sample (torch.FloatTensorornp.ndarray): current instance of sample being created by diffusion process. return_dict (bool): option for returning tuple rather than SchedulerOutput class
Returns
SchedulerOutput or tuple
SchedulerOutput if return_dict is True, otherwise a tuple. When
returning a tuple, the first element is the sample tensor.