Diffusers documentation

HiDreamImageTransformer2DModel

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.33.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

HiDreamImageTransformer2DModel

A Transformer model for image-like data from HiDream-I1.

The model can be loaded with the following code snippet.

from diffusers import HiDreamImageTransformer2DModel

transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)

HiDreamImageTransformer2DModel

class diffusers.HiDreamImageTransformer2DModel

< >

( patch_size: typing.Optional[int] = None in_channels: int = 64 out_channels: typing.Optional[int] = None num_layers: int = 16 num_single_layers: int = 32 attention_head_dim: int = 128 num_attention_heads: int = 20 caption_channels: typing.List[int] = None text_emb_dim: int = 2048 num_routed_experts: int = 4 num_activated_experts: int = 2 axes_dims_rope: typing.Tuple[int, int] = (32, 32) max_resolution: typing.Tuple[int, int] = (128, 128) llama_layers: typing.List[int] = None )

Transformer2DModelOutput

class diffusers.models.modeling_outputs.Transformer2DModelOutput

< >

( sample: torch.Tensor )

Parameters

  • sample (torch.Tensor of shape (batch_size, num_channels, height, width) or (batch size, num_vector_embeds - 1, num_latent_pixels) if Transformer2DModel is discrete) — The hidden states output conditioned on the encoder_hidden_states input. If discrete, returns probability distributions for the unnoised latent pixels.

The output of Transformer2DModel.

< > Update on GitHub