|
--- |
|
language: |
|
- en |
|
- ar |
|
- zh |
|
- nl |
|
- fr |
|
- de |
|
- hi |
|
- in |
|
- it |
|
- ja |
|
- pt |
|
- ru |
|
- es |
|
- vi |
|
- multilingual |
|
license: apache-2.0 |
|
datasets: |
|
- unicamp-dl/mmarco |
|
widget: |
|
- text: Python ist eine universelle, �blicherweise interpretierte, h�here Programmiersprache. |
|
Sie hat den Anspruch, einen gut lesbaren, knappen Programmierstil zu f�rdern. |
|
So werden beispielsweise Bl�cke nicht durch geschweifte Klammern, sondern durch |
|
Einr�ckungen strukturiert. |
|
--- |
|
|
|
# doc2query/msmarco-14langs-mt5-base-v1 |
|
|
|
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It was trained on all 14 languages of [mMARCO dataset](https://github.com/unicamp-dl/mMARCO), i.e. you can input a passage in any of the 14 languages, and it will generate a query in the same language. |
|
|
|
It can be used for: |
|
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. |
|
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
|
|
model_name = 'doc2query/msmarco-14langs-mt5-base-v1' |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
text = "Python ist eine universelle, �blicherweise interpretierte, h�here Programmiersprache. Sie hat den Anspruch, einen gut lesbaren, knappen Programmierstil zu f�rdern. So werden beispielsweise Bl�cke nicht durch geschweifte Klammern, sondern durch Einr�ckungen strukturiert." |
|
|
|
|
|
def create_queries(para): |
|
input_ids = tokenizer.encode(para, return_tensors='pt') |
|
with torch.no_grad(): |
|
# Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality |
|
sampling_outputs = model.generate( |
|
input_ids=input_ids, |
|
max_length=64, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=10, |
|
num_return_sequences=5 |
|
) |
|
|
|
# Here we use Beam-search. It generates better quality queries, but with less diversity |
|
beam_outputs = model.generate( |
|
input_ids=input_ids, |
|
max_length=64, |
|
num_beams=5, |
|
no_repeat_ngram_size=2, |
|
num_return_sequences=5, |
|
early_stopping=True |
|
) |
|
|
|
|
|
print("Paragraph:") |
|
print(para) |
|
|
|
print("\nBeam Outputs:") |
|
for i in range(len(beam_outputs)): |
|
query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) |
|
print(f'{i + 1}: {query}') |
|
|
|
print("\nSampling Outputs:") |
|
for i in range(len(sampling_outputs)): |
|
query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) |
|
print(f'{i + 1}: {query}') |
|
|
|
create_queries(text) |
|
|
|
``` |
|
|
|
**Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. |
|
|
|
## Training |
|
This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 525k training steps on all 14 languages from [mMARCO dataset](https://github.com/unicamp-dl/mMARCO). For the training script, see the `train_script.py` in this repository. |
|
|
|
The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. |
|
|
|
This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO). |
|
|
|
|
|
|
|
|