artificial-styletts2 / msinference.py
Dionyssos's picture
2 voice deu demo VITS
d8edfa5
raw
history blame
13.6 kB
import torch
from cached_path import cached_path
# import nltk
import audresample
# nltk.download('punkt')
import numpy as np
import yaml
import torchaudio
import librosa
from models import ProsodyPredictor, TextEncoder, StyleEncoder, load_F0_models
from nltk.tokenize import word_tokenize
# IPA Phonemizer: https://github.com/bootphon/phonemizer
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = style_encoder(mel_tensor.unsqueeze(1))
ref_p = predictor_encoder(mel_tensor.unsqueeze(1)) # [bs, 11, 1, 128]
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256]
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11]
return s# [1, 128, 11]
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
# print("MPS would be available but cannot be used rn")
pass
# device = 'mps'
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
args = yaml.safe_load(open(str('Utils/config.yml')))
ASR_config = args['ASR_config']
F0_path = args['F0_path']
pitch_extractor = load_F0_models(F0_path).eval().to(device)
from Utils.PLBERT.util import load_plbert
from Modules.hifigan import Decoder
bert = load_plbert(args['PLBERT_dir']).eval().to(device)
decoder = Decoder(dim_in=512,
style_dim=128,
dim_out=80, # n_mels
resblock_kernel_sizes = [3, 7, 11],
upsample_rates = [10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]).eval().to(device)
text_encoder = TextEncoder(channels=512,
kernel_size=5,
depth=3, #args['model_params']['n_layer'],
n_symbols=178, #args['model_params']['n_token']
).eval().to(device)
predictor = ProsodyPredictor(style_dim=128,
d_hid=512,
nlayers=3, # OFFICIAL config.nlayers=5;
max_dur=50,
dropout=.2).eval().to(device)
style_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # acoustic style encoder
predictor_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # prosodic style encoder
bert_encoder = torch.nn.Linear(bert.config.hidden_size, 512).eval().to(device)
# params_whole = torch.load('freevc2/yl4579_styletts2.pth' map_location='cpu')
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
params = params_whole['net']
from collections import OrderedDict
def _del_prefix(d):
# del ".module"
out = OrderedDict()
for k, v in d.items():
out[k[7:]] = v
return out
bert.load_state_dict( _del_prefix(params['bert']), strict=True)
bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
predictor.load_state_dict( _del_prefix(params['predictor']), strict=True) # XTRA non-ckpt LSTMs nlayers add slowiness to voice
decoder.load_state_dict( _del_prefix(params['decoder']), strict=True)
text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
predictor_encoder.load_state_dict(_del_prefix(params['predictor_encoder']), strict=True)
style_encoder.load_state_dict(_del_prefix(params['style_encoder']), strict=True)
pitch_extractor.load_state_dict(_del_prefix(params['pitch_extractor']), strict=True)
# def _shift(x):
# # [bs, samples] shift circular each batch elem of sound
# n = x.shape[1]
# for i, batch_elem in enumerate(x):
# offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD
# x[i, ...] = torch.roll(batch_elem, offset, dims=1) # batch_elem = [400000, ]
# return x
def inference(text,
ref_s,
use_gruut=False):
# Ignore .,; AT end of sentence; or just [-50:]
text = text.strip()
ps = global_phonemizer.phonemize([text])
# print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
ps = word_tokenize(ps[0])
# # print(f'TOKENIZER: {ps=}\n\n') #OKENIZER: ps=['ɐbˈɛbæbləm']
ps = ' '.join(ps)
tokens = textclenaer(ps)
# print(f'TEXTCLEAN: {ps=}\n\n') #TEXTCLEAN: ps='ɐbˈɛbæbləm'
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
# print(f'TOKENSFINAL: {ps=}\n\n')
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
hidden_states = text_encoder(tokens, input_lengths)
bert_dur = bert(tokens, attention_mask=None)
d_en = bert_encoder(bert_dur).transpose(-1, -2)
ref = ref_s[:, :128, :] # [bs, 128, 11]
s = ref_s[:, 128:, :]
d = predictor.text_encoder(d_en, s, input_lengths)
d = d.transpose(1, 2)
# -------------------------------- pred_aln_trg = clones bert frames as duration
d = predictor.text_encoder(d_en,
s,
input_lengths)
x, _ = predictor.lstm(d)
duration = predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = predictor.F0Ntrain(en, s)
asr = (hidden_states @ pred_aln_trg.unsqueeze(0).to(device))
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
# -
x = decoder(asr=asr,
F0_curve=F0_pred,
N=N_pred,
s=ref)
x = x.cpu().numpy()[0, 0, :-400] # weird pulse at the end of sentences
print(x.shape,' A')
if x.shape[0] > 10:
x /= np.abs(x).max() + 1e-7
else:
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
x = np.zeros(0)
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from num2words import num2words
import os
import re
import tempfile
import torch
import sys
from Modules.vits.models import VitsModel, VitsTokenizer
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
# ==============================================================================================
PHONEME_MAP = {
'služ' : 'sloooozz', # 'službeno'
'suver': 'siuveeerra', # 'suverena'
'država': 'dirrezav', # 'država'
'iči': 'ici', # 'Graniči'
's ': 'se', # a s with space
'q': 'ku',
'w': 'aou',
'z': 's',
"š": "s",
'th': 'ta',
'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
"ž": "z",
# "c": "č"
}
# ALLOWED_PHONEMES = set("šč_bďph`-3žt 'ľzj5yuoóx1vfnaiedt́sṁkň2rčlg")
def number_to_phonemes(match):
number = int(match.group())
words = num2words(number, lang='sr')
return fix_phones(words.lower())
# return words
def fix_phones(text):
for src, target in PHONEME_MAP.items():
text = text.replace(src, target)
# text = re.sub(r'\s+', '` `', text) #.strip() #.lower()
# text = re.sub(r'\s+', '_ _', text) # almost proper pausing
return text.replace(',', '_ _').replace('.', '_ _')
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
def foreign(text=None, # list of text
lang='romanian',
speed=None):
lang = lang.lower() # https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
if has_cyrillic(text[0]): # check 0-th sentence if is cyrillic
lang_code = 'rmc-script_cyrillic' # romani carpathian (also has latin / cyrillic Vlax)
else:
lang_code = 'rmc-script_latin' # romani carpathian (has also Vlax)
elif 'rom' in lang:
lang_code = 'ron'
speed = 1.24 if speed is None else speed
elif 'ger' in lang:
lang_code = 'deu'
speed = 1.14 if speed is None else speed
elif 'alban' in lang:
lang_code = 'sqi'
speed = 1.04 if speed is None else speed
else:
lang_code = lang.split()[0].strip()
# Load VITS
net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
# CALL MMS TTS VITS
x = []
for _t in text:
_t = _t.lower()
if lang_code == 'rmc-script_latin':
_t = re.sub(r'\d+', number_to_phonemes, _t)
_t = fix_phones(_t)
elif lang_code == 'ron':
_t = _t.replace("ţ", "ț"
).replace('ț','ts').replace('î', 'u')
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
inputs = tokenizer(_t, return_tensors="pt") # input_ids / attention_mask
with torch.no_grad():
# -- reset speed
net_g.speaking_rate = speed
# --
x.append(
net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device))
)
print(x[-1].shape)
print(f'{speed=}\n\n\n\n_______________________________ {_t}')
x = torch.cat(x).cpu().numpy()
x /= np.abs(x).max() + 1e-7
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
x = audresample.resample(signal=x.astype(np.float32),
original_rate=16000,
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
return x