File size: 13,602 Bytes
d72b2c3 ac6157a 38f0a43 d72b2c3 d353343 d72b2c3 5755d22 d72b2c3 38f0a43 d72b2c3 62ef231 d353343 d72b2c3 62ef231 d72b2c3 62ef231 d72b2c3 62ef231 d353343 62ef231 d72b2c3 bb2cd38 d72b2c3 62ef231 64ccdd0 d72b2c3 64ccdd0 d72b2c3 9146509 38f0a43 ac6157a d72b2c3 ac6157a d72b2c3 bb2cd38 d72b2c3 966f861 d72b2c3 64ccdd0 d353343 64ccdd0 62ef231 d353343 62ef231 64ccdd0 d72b2c3 62ef231 d353343 62ef231 d72b2c3 a93bf0d d72b2c3 a93bf0d d353343 62ef231 d72b2c3 d353343 a93bf0d 62ef231 d72b2c3 64e63ea 38f0a43 64e63ea 38f0a43 64ccdd0 38f0a43 477195e 38f0a43 b399825 62ef231 b399825 38f0a43 5b7599e b399825 560f712 38f0a43 560f712 38f0a43 b399825 38f0a43 5b7599e 38f0a43 b399825 38f0a43 560f712 38f0a43 560f712 b399825 38f0a43 560f712 38f0a43 560f712 477195e 38f0a43 477195e 5b7599e b399825 477195e 5b7599e d8edfa5 5b7599e 477195e d8edfa5 38f0a43 477195e 5b7599e 477195e 5b7599e 38f0a43 560f712 38f0a43 477195e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import torch
from cached_path import cached_path
# import nltk
import audresample
# nltk.download('punkt')
import numpy as np
import yaml
import torchaudio
import librosa
from models import ProsodyPredictor, TextEncoder, StyleEncoder, load_F0_models
from nltk.tokenize import word_tokenize
# IPA Phonemizer: https://github.com/bootphon/phonemizer
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = style_encoder(mel_tensor.unsqueeze(1))
ref_p = predictor_encoder(mel_tensor.unsqueeze(1)) # [bs, 11, 1, 128]
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256]
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11]
return s# [1, 128, 11]
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
# print("MPS would be available but cannot be used rn")
pass
# device = 'mps'
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
args = yaml.safe_load(open(str('Utils/config.yml')))
ASR_config = args['ASR_config']
F0_path = args['F0_path']
pitch_extractor = load_F0_models(F0_path).eval().to(device)
from Utils.PLBERT.util import load_plbert
from Modules.hifigan import Decoder
bert = load_plbert(args['PLBERT_dir']).eval().to(device)
decoder = Decoder(dim_in=512,
style_dim=128,
dim_out=80, # n_mels
resblock_kernel_sizes = [3, 7, 11],
upsample_rates = [10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]).eval().to(device)
text_encoder = TextEncoder(channels=512,
kernel_size=5,
depth=3, #args['model_params']['n_layer'],
n_symbols=178, #args['model_params']['n_token']
).eval().to(device)
predictor = ProsodyPredictor(style_dim=128,
d_hid=512,
nlayers=3, # OFFICIAL config.nlayers=5;
max_dur=50,
dropout=.2).eval().to(device)
style_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # acoustic style encoder
predictor_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # prosodic style encoder
bert_encoder = torch.nn.Linear(bert.config.hidden_size, 512).eval().to(device)
# params_whole = torch.load('freevc2/yl4579_styletts2.pth' map_location='cpu')
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
params = params_whole['net']
from collections import OrderedDict
def _del_prefix(d):
# del ".module"
out = OrderedDict()
for k, v in d.items():
out[k[7:]] = v
return out
bert.load_state_dict( _del_prefix(params['bert']), strict=True)
bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
predictor.load_state_dict( _del_prefix(params['predictor']), strict=True) # XTRA non-ckpt LSTMs nlayers add slowiness to voice
decoder.load_state_dict( _del_prefix(params['decoder']), strict=True)
text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
predictor_encoder.load_state_dict(_del_prefix(params['predictor_encoder']), strict=True)
style_encoder.load_state_dict(_del_prefix(params['style_encoder']), strict=True)
pitch_extractor.load_state_dict(_del_prefix(params['pitch_extractor']), strict=True)
# def _shift(x):
# # [bs, samples] shift circular each batch elem of sound
# n = x.shape[1]
# for i, batch_elem in enumerate(x):
# offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD
# x[i, ...] = torch.roll(batch_elem, offset, dims=1) # batch_elem = [400000, ]
# return x
def inference(text,
ref_s,
use_gruut=False):
# Ignore .,; AT end of sentence; or just [-50:]
text = text.strip()
ps = global_phonemizer.phonemize([text])
# print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
ps = word_tokenize(ps[0])
# # print(f'TOKENIZER: {ps=}\n\n') #OKENIZER: ps=['ɐbˈɛbæbləm']
ps = ' '.join(ps)
tokens = textclenaer(ps)
# print(f'TEXTCLEAN: {ps=}\n\n') #TEXTCLEAN: ps='ɐbˈɛbæbləm'
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
# print(f'TOKENSFINAL: {ps=}\n\n')
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
hidden_states = text_encoder(tokens, input_lengths)
bert_dur = bert(tokens, attention_mask=None)
d_en = bert_encoder(bert_dur).transpose(-1, -2)
ref = ref_s[:, :128, :] # [bs, 128, 11]
s = ref_s[:, 128:, :]
d = predictor.text_encoder(d_en, s, input_lengths)
d = d.transpose(1, 2)
# -------------------------------- pred_aln_trg = clones bert frames as duration
d = predictor.text_encoder(d_en,
s,
input_lengths)
x, _ = predictor.lstm(d)
duration = predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = predictor.F0Ntrain(en, s)
asr = (hidden_states @ pred_aln_trg.unsqueeze(0).to(device))
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
# -
x = decoder(asr=asr,
F0_curve=F0_pred,
N=N_pred,
s=ref)
x = x.cpu().numpy()[0, 0, :-400] # weird pulse at the end of sentences
print(x.shape,' A')
if x.shape[0] > 10:
x /= np.abs(x).max() + 1e-7
else:
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
x = np.zeros(0)
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from num2words import num2words
import os
import re
import tempfile
import torch
import sys
from Modules.vits.models import VitsModel, VitsTokenizer
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
# ==============================================================================================
PHONEME_MAP = {
'služ' : 'sloooozz', # 'službeno'
'suver': 'siuveeerra', # 'suverena'
'država': 'dirrezav', # 'država'
'iči': 'ici', # 'Graniči'
's ': 'se', # a s with space
'q': 'ku',
'w': 'aou',
'z': 's',
"š": "s",
'th': 'ta',
'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
"ž": "z",
# "c": "č"
}
# ALLOWED_PHONEMES = set("šč_bďph`-3žt 'ľzj5yuoóx1vfnaiedt́sṁkň2rčlg")
def number_to_phonemes(match):
number = int(match.group())
words = num2words(number, lang='sr')
return fix_phones(words.lower())
# return words
def fix_phones(text):
for src, target in PHONEME_MAP.items():
text = text.replace(src, target)
# text = re.sub(r'\s+', '` `', text) #.strip() #.lower()
# text = re.sub(r'\s+', '_ _', text) # almost proper pausing
return text.replace(',', '_ _').replace('.', '_ _')
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
def foreign(text=None, # list of text
lang='romanian',
speed=None):
lang = lang.lower() # https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
if has_cyrillic(text[0]): # check 0-th sentence if is cyrillic
lang_code = 'rmc-script_cyrillic' # romani carpathian (also has latin / cyrillic Vlax)
else:
lang_code = 'rmc-script_latin' # romani carpathian (has also Vlax)
elif 'rom' in lang:
lang_code = 'ron'
speed = 1.24 if speed is None else speed
elif 'ger' in lang:
lang_code = 'deu'
speed = 1.14 if speed is None else speed
elif 'alban' in lang:
lang_code = 'sqi'
speed = 1.04 if speed is None else speed
else:
lang_code = lang.split()[0].strip()
# Load VITS
net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
# CALL MMS TTS VITS
x = []
for _t in text:
_t = _t.lower()
if lang_code == 'rmc-script_latin':
_t = re.sub(r'\d+', number_to_phonemes, _t)
_t = fix_phones(_t)
elif lang_code == 'ron':
_t = _t.replace("ţ", "ț"
).replace('ț','ts').replace('î', 'u')
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
inputs = tokenizer(_t, return_tensors="pt") # input_ids / attention_mask
with torch.no_grad():
# -- reset speed
net_g.speaking_rate = speed
# --
x.append(
net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device))
)
print(x[-1].shape)
print(f'{speed=}\n\n\n\n_______________________________ {_t}')
x = torch.cat(x).cpu().numpy()
x /= np.abs(x).max() + 1e-7
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
x = audresample.resample(signal=x.astype(np.float32),
original_rate=16000,
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
return x
|