logs / README.md
djsull's picture
djsull/logs_512
f95f289 verified
|
raw
history blame
2.12 kB
metadata
base_model: klue/roberta-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: logs
    results: []

logs

This model is a fine-tuned version of klue/roberta-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0008
  • Precision: 0.9900
  • Recall: 0.995
  • F1: 0.9925
  • Accuracy: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 44 0.0039 0.9701 0.975 0.9726 0.9991
No log 2.0 88 0.0018 0.8744 0.94 0.9060 0.9995
No log 3.0 132 0.0011 0.9559 0.975 0.9653 0.9998
No log 4.0 176 0.0008 0.9900 0.995 0.9925 0.9999
No log 5.0 220 0.0007 0.9803 0.995 0.9876 0.9999
No log 6.0 264 0.0007 0.9851 0.995 0.9900 0.9999
No log 7.0 308 0.0007 0.9900 0.995 0.9925 0.9999
No log 8.0 352 0.0007 0.9803 0.995 0.9876 0.9999

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.0.1
  • Datasets 2.19.1
  • Tokenizers 0.19.1